Google は、黒人コミュニティのための人種的公平の促進に取り組んでいます。詳細をご覧ください。

Firebase Auth と Functions を使用して Cloud Vision で画像に安全にラベルを付ける(Android)

アプリから Google Cloud API を呼び出すには、認可を処理し、API キーなどのシークレット値を保護するための中間 REST API を作成する必要があります。次に、モバイルアプリでこの中間サービスに対する認証と通信を行うためのコードを記述します。

この REST API を作成する方法の一つとして、Firebase Authentication と Functions を使用する方法があります。この方法では、Google Cloud API に対するサーバーレスのマネージド ゲートウェイが提供され、そこで認証が処理されます。このゲートウェイは、事前構築された SDK を使用してモバイルアプリから呼び出すことができます。

このガイドでは、この手法を使用してアプリから Cloud Vision API を呼び出す方法について説明します。この手法では、すべての認証済みユーザーが Cloud のプロジェクト経由で Cloud Vision の課金サービスにアクセスできます。そのため、続行する前に、目的のユースケースにおいてこの認証メカニズムで十分かどうかを考慮してください。

始める前に

プロジェクトを構成する

  1. まだ Firebase を Android プロジェクトに追加していない場合は追加します。
  2. プロジェクトで Cloud ベースの API をまだ有効にしていない場合は、ここで有効にします。

    1. Firebase コンソールの Firebase ML の [APIs] ページを開きます。
    2. まだプロジェクトを Blaze 料金プランにアップグレードしていない場合は、[アップグレード] をクリックしてアップグレードします(プロジェクトをアップグレードするよう求められるのは、プロジェクトが Blaze プランでない場合のみです)。

      Blaze レベルのプロジェクトだけが Cloud ベースの API を使用できます。

    3. Cloud ベースの API がまだ有効になっていない場合は、[Cloud ベースの API を有効化] をクリックします。
  3. 既存の Firebase API キーを構成して、Cloud Vision API へのアクセスを許可しないようにします。
    1. Cloud Console の [認証情報] ページを開きます。
    2. リスト内の各 API キーについて、編集ビューを開き、[キーの制限] セクションで Cloud Vision API を除く使用可能なすべての API をリストに追加します。

呼び出し可能関数をデプロイする

次に、アプリと Cloud Vision API の間のブリッジとして使用する Cloud Functions の関数をデプロイします。functions-samples リポジトリには、使用可能なサンプルが含まれています。

デフォルトでは、この関数を通じて Cloud Vision API にアクセスすると、アプリの認証済みユーザーのみが Cloud Vision API にアクセスできます。関数はさまざまな要件に応じて変更できます。

関数をデプロイするには:

  1. 関数サンプル リポジトリのクローンを作成するか、ダウンロードして、vision-annotate-image ディレクトリに移動します。
    git clone https://github.com/firebase/functions-samples
    cd vision-annotate-image
    
  2. 依存関係をインストールします。
    cd functions
    npm install
    cd ..
    
  3. Firebase CLI がインストールされていない場合は、インストールします。
  4. vision-annotate-image ディレクトリ内で Firebase プロジェクトを初期化します。プロンプトが表示されたら、リストからプロジェクトを選択します。
    firebase init
  5. 関数をデプロイします。
    firebase deploy --only functions:annotateImage

アプリに Firebase Auth を追加する

上記でデプロイした呼び出し可能関数は、アプリ内で認証されていないユーザーからのリクエストを拒否します。アプリにまだ Firebase Auth を追加していない場合は、Firebase Auth を追加する必要があります。

必要な依存関係をアプリに追加する

  • Firebase Functions ライブラリと Gson Android ライブラリの依存関係をモジュール(アプリレベル)の Gradle ファイル(通常は app/build.gradle)に追加します。
    implementation 'com.google.firebase:firebase-functions:20.0.1'
    implementation 'com.google.code.gson:gson:2.8.6'
    
  • これで、画像にラベルを付ける準備が整いました。

    1. 入力画像を準備する

    Cloud Vision を呼び出すには、画像を base64 でエンコードされた文字列としてフォーマットする必要があります。保存されたファイルの URI から画像を処理するには:
    1. 画像を Bitmap オブジェクトとして取得します。

      Java

      Bitmap bitmap = MediaStore.Images.Media.getBitmap(getContentResolver(), uri);

      Kotlin+KTX

      var bitmap: Bitmap = MediaStore.Images.Media.getBitmap(contentResolver, uri)
    2. 必要に応じて、帯域幅を節約するために画像を縮小します。Cloud Vision の推奨画像サイズをご覧ください。

      Java

      private Bitmap scaleBitmapDown(Bitmap bitmap, int maxDimension) {
          int originalWidth = bitmap.getWidth();
          int originalHeight = bitmap.getHeight();
          int resizedWidth = maxDimension;
          int resizedHeight = maxDimension;
      
          if (originalHeight > originalWidth) {
              resizedHeight = maxDimension;
              resizedWidth = (int) (resizedHeight * (float) originalWidth / (float) originalHeight);
          } else if (originalWidth > originalHeight) {
              resizedWidth = maxDimension;
              resizedHeight = (int) (resizedWidth * (float) originalHeight / (float) originalWidth);
          } else if (originalHeight == originalWidth) {
              resizedHeight = maxDimension;
              resizedWidth = maxDimension;
          }
          return Bitmap.createScaledBitmap(bitmap, resizedWidth, resizedHeight, false);
      }

      Kotlin+KTX

      private fun scaleBitmapDown(bitmap: Bitmap, maxDimension: Int): Bitmap {
          val originalWidth = bitmap.width
          val originalHeight = bitmap.height
          var resizedWidth = maxDimension
          var resizedHeight = maxDimension
          if (originalHeight > originalWidth) {
              resizedHeight = maxDimension
              resizedWidth =
                      (resizedHeight * originalWidth.toFloat() / originalHeight.toFloat()).toInt()
          } else if (originalWidth > originalHeight) {
              resizedWidth = maxDimension
              resizedHeight =
                      (resizedWidth * originalHeight.toFloat() / originalWidth.toFloat()).toInt()
          } else if (originalHeight == originalWidth) {
              resizedHeight = maxDimension
              resizedWidth = maxDimension
          }
          return Bitmap.createScaledBitmap(bitmap, resizedWidth, resizedHeight, false)
      }

      Java

      // Scale down bitmap size
      bitmap = scaleBitmapDown(bitmap, 640);

      Kotlin+KTX

      // Scale down bitmap size
      bitmap = scaleBitmapDown(bitmap, 640)
    3. ビットマップ オブジェクトを base64 でエンコードされた文字列に変換します。

      Java

      // Convert bitmap to base64 encoded string
      ByteArrayOutputStream byteArrayOutputStream = new ByteArrayOutputStream();
      bitmap.compress(Bitmap.CompressFormat.JPEG, 100, byteArrayOutputStream);
      byte[] imageBytes = byteArrayOutputStream.toByteArray();
      String base64encoded = Base64.encodeToString(imageBytes, Base64.NO_WRAP);

      Kotlin+KTX

      // Convert bitmap to base64 encoded string
      val byteArrayOutputStream = ByteArrayOutputStream()
      bitmap.compress(Bitmap.CompressFormat.JPEG, 100, byteArrayOutputStream)
      val imageBytes: ByteArray = byteArrayOutputStream.toByteArray()
      val base64encoded = Base64.encodeToString(imageBytes, Base64.NO_WRAP)
    4. Bitmap オブジェクトによって表される画像は、これ以上回転させる必要がないように、正しい向きになっている必要があります。

    2. 呼び出し可能関数を呼び出し、画像にラベルを付ける

    画像内のオブジェクトにラベルを付けるには、呼び出し可能関数を呼び出し、JSON Cloud Vision リクエストを渡します。

    1. 最初に Cloud Functions のインスタンスを初期化します。

      Java

      private FirebaseFunctions mFunctions;
      // ...
      mFunctions = FirebaseFunctions.getInstance();
      

      Kotlin+KTX

      private lateinit var functions: FirebaseFunctions
      // ...
      functions = Firebase.functions
      
    2. 関数を呼び出すメソッドを定義します。

      Java

      private Task<JsonElement> annotateImage(String requestJson) {
          return mFunctions
                  .getHttpsCallable("annotateImage")
                  .call(requestJson)
                  .continueWith(new Continuation<HttpsCallableResult, JsonElement>() {
                      @Override
                      public JsonElement then(@NonNull Task<HttpsCallableResult> task) {
                          // This continuation runs on either success or failure, but if the task
                          // has failed then getResult() will throw an Exception which will be
                          // propagated down.
                          return JsonParser.parseString(new Gson().toJson(task.getResult().getData()));
                      }
                  });
      }
      

      Kotlin+KTX

      private fun annotateImage(requestJson: String): Task<JsonElement> {
          return functions
                  .getHttpsCallable("annotateImage")
                  .call(requestJson)
                  .continueWith { task ->
                      // This continuation runs on either success or failure, but if the task
                      // has failed then result will throw an Exception which will be
                      // propagated down.
                      val result = task.result?.data
                      JsonParser.parseString(Gson().toJson(result))
                  }
      }
      
    3. JSON リクエストを作成し、タイプとして LABEL_DETECTION を設定します。

      Java

      // Create json request to cloud vision
      JsonObject request = new JsonObject();
      // Add image to request
      JsonObject image = new JsonObject();
      image.add("content", new JsonPrimitive(base64encoded));
      request.add("image", image);
      //Add features to the request
      JsonObject feature = new JsonObject();
      feature.add("maxResults", new JsonPrimitive(5));
      feature.add("type", new JsonPrimitive("LABEL_DETECTION"));
      JsonArray features = new JsonArray();
      features.add(feature);
      request.add("features", features);
      

      Kotlin+KTX

      // Create json request to cloud vision
      val request = JsonObject()
      // Add image to request
      val image = JsonObject()
      image.add("content", JsonPrimitive(base64encoded))
      request.add("image", image)
      //Add features to the request
      val feature = JsonObject()
      feature.add("maxResults", JsonPrimitive(5))
      feature.add("type", JsonPrimitive("LABEL_DETECTION"))
      val features = JsonArray()
      features.add(feature)
      request.add("features", features)
      
    4. 関数を呼び出します。

      Java

      annotateImage(request.toString())
              .addOnCompleteListener(new OnCompleteListener<JsonElement>() {
                  @Override
                  public void onComplete(@NonNull Task<JsonElement> task) {
                      if (!task.isSuccessful()) {
                          // Task failed with an exception
                          // ...
                      } else {
                          // Task completed successfully
                          // ...
                      }
                  }
              });
      

      Kotlin+KTX

      annotateImage(request.toString())
              .addOnCompleteListener { task ->
                  if (!task.isSuccessful) {
                      // Task failed with an exception
                      // ...
                  } else {
                      // Task completed successfully
                      // ...
                  }
              }
      

    3. ラベル付きオブジェクトに関する情報を取得する

    画像のラベル付けの処理が成功すると、タスクの結果として BatchAnnotateImagesResponse の JSON レスポンスが返されます。labelAnnotations 配列の各オブジェクトは、画像内でラベル付けされたものを表します。ラベルごとに、ラベルのテキストの説明、ラベルのナレッジグラフ エンティティの ID(使用できる場合)、マッチの信頼スコアを取得できます。次に例を示します。

    Java

    for (JsonElement label : task.getResult().getAsJsonArray().get(0).getAsJsonObject().get("labelAnnotations").getAsJsonArray()) {
        JsonObject labelObj = label.getAsJsonObject();
        String text = labelObj.get("description").getAsString();
        String entityId = labelObj.get("mid").getAsString();
        float score = labelObj.get("score").getAsFloat();
    }
    

    Kotlin+KTX

    for (label in task.result!!.asJsonArray[0].asJsonObject["labelAnnotations"].asJsonArray) {
        val labelObj = label.asJsonObject
        val text = labelObj["description"]
        val entityId = labelObj["mid"]
        val confidence = labelObj["score"]
    }