System and Organization Controls (SOC) 3
Report over the Google Firebase System
Relevant to Security, Availability, and Confidentiality
For the Period 1 November 2019 to 31 October 2020
Management’s Report of Its Assertions on the Effectiveness of Its Controls Over the Google Firebase System Based on the Trust Services Criteria for Security, Availability, and Confidentiality

We, as management of Google LLC ("Google" or "the Company") are responsible for:

- Identifying the Google Firebase System (System) and describing the boundaries of the System, which are presented in Attachment A
- Identifying our principal service commitments and system requirements
- Identifying the risks that would threaten the achievement of its principal service commitments and system requirements that are the objectives of our system, which are presented in Attachment B
- Identifying, designing, implementing, operating, and monitoring effective controls over the Google Firebase System (System) to mitigate risks that threaten the achievement of the principal service commitments and system requirements
- Selecting the trust services categories that are the basis of our assertion

We assert that the controls over the system were effective throughout the period 1 November 2019 to 31 October 2020, to provide reasonable assurance that the principal service commitments and system requirements were achieved based on the criteria relevant to security, availability, and confidentiality set forth in the AICPA’s TSP section 100, 2017 Trust Services Criteria for Security, Availability, Processing Integrity, Confidentiality, and Privacy.

Very truly yours,

Google LLC
17 December 2020
Report of Independent Accountants

To the Management of Google LLC:

Scope

We have examined management’s assertion, contained within the accompanying "Management’s Report of Its Assertions on the Effectiveness of Its Controls over the Google Firebase System Based on the Trust Services Criteria for Security, Availability and Confidentiality" (Assertion), that Google’s controls over the Google Firebase System (System) were effective throughout the period 1 November 2019 to 31 October 2020, to provide reasonable assurance that its principal service commitments and system requirements were achieved based on the criteria relevant to security, availability, and confidentiality (applicable trust services criteria) set forth in the AICPA’s TSP section 100, 2017 Trust Services Criteria for Security, Availability, Processing Integrity, Confidentiality, and Privacy.

Management’s Responsibilities

Google’s management is responsible for its assertion, selecting the trust services categories and associated criteria on which its assertion is based, and having a reasonable basis for its assertion. It is also responsible for:

- Identifying the Google Firebase System and describing the boundaries of the System
- Identifying its principal service commitments and system requirements and the risks that would threaten the achievement of its principal service commitments and service requirements that are the objectives of its system
- Identifying, designing, implementing, operating, and monitoring effective controls over the System to mitigate risks that threaten the achievement of the principal service commitments and system requirements

Our Responsibilities

Our responsibility is to express an opinion on the Assertion, based on our examination. Our examination was conducted in accordance with attestation standards established by the American Institute of Certified Public Accountants (AICPA). Those standards require that we plan and perform our examination to obtain reasonable assurance about whether management’s assertion is fairly stated, in all material respects. An examination involves performing procedures to obtain evidence about management's assertion, which includes: (1) obtaining an understanding of Google’s relevant security, availability, and confidentiality policies, processes and controls, (2) testing and evaluating the operating effectiveness of the controls, and (3) performing such other procedures as we considered necessary in the circumstances. The nature, timing, and extent of the procedures selected depend on our judgment, including an assessment of the risk of material
misstatement, whether due to fraud or error. We believe that the evidence obtained during our examination is sufficient to provide a reasonable basis for our opinion.

Our examination was not conducted for the purpose of evaluating Google’s cybersecurity risk management program. Accordingly, we do not express an opinion or any other form of assurance on its cybersecurity risk management program.

Inherent limitations

Because of their nature and inherent limitations, controls may not prevent, or detect and correct, all misstatements that may be considered relevant. Furthermore, the projection of any evaluations of effectiveness to future periods, or conclusions about the suitability of the design of the controls to achieve Google’s principal service commitments and system requirements, is subject to the risk that controls may become inadequate because of changes in conditions, that the degree of compliance with such controls may deteriorate, or that changes made to the system or controls, or the failure to make needed changes to the system or controls, may alter the validity of such evaluations. Examples of inherent limitations of internal controls related to security include (a) vulnerabilities in information technology components as a result of design by their manufacturer or developer; (b) breakdown of internal control at a vendor or business partner; and (c) persistent attackers with the resources to use advanced technical means and sophisticated social engineering techniques specifically targeting the entity.

Opinion

In our opinion, Google’s controls over the system were effective throughout the period 1 November 2019 to 31 October 2020, to provide reasonable assurance that its principal service commitments and system requirements were achieved based on the applicable trust services criteria.

17 December 2020
San Jose, CA
Attachment A - Google Firebase System

Overview

Google LLC (“Google” or “the Company”) is a global technology service provider focused on improving the ways people connect with information. Google's innovations in web search and advertising have made Google’s website one of the most viewed Internet destinations and its brand among the most recognized in the world. Google maintains one of the world's largest online index of websites and other content and makes this information freely available to anyone with an Internet connection. Google’s automated search technology helps people obtain nearly instant access to relevant information from its vast online index.

Firebase is a mobile app platform (platform as a service or PaaS) offered by Google with an integrated, unified software development kit (SDK), hereafter described collectively as "Google Firebase" or "Firebase". Firebase provides developers with a rich suite of tools and resources to develop and manage high quality apps, for growing their user base, and to monetize the platform. It consists of complementary features that work independently or can be mixed-and-matched as needed.

Leveraging Google's cloud environment, Firebase can be accessed from virtually any location with internet connectivity. This means every developer and each user they work with can be productive from anywhere, using any device with an internet connection.

The Firebase services covered in this system description consist of the following:

- Firebase A/B Testing
- Firebase Cloud Messaging
- Firebase Console
- Firebase Crashlytics
- Firebase Dynamic Links
- Firebase Hosting
- Firebase In-App Messaging
- Firebase Performance Monitoring
- Firebase Predictions
- Firebase Realtime Database
- Firebase Remote Config
- Firebase User Segmentation Storage
- Firebase Machine Learning

Firebase A/B Testing

Firebase A/B Testing allows developers to make data-driven decisions about changes to their applications. Developers can run controlled experiments with Firebase Remote Config parameters to compare alternative scenarios and see which one performs better in reaching their goals.
Firebase Cloud Messaging

Firebase Cloud Messaging (FCM) is a cross-platform messaging solution that allows developers to send messages to devices. Using FCM, developers can notify a client app that a new email or other data is available to sync. Developers can send notification messages to drive user re-engagement and retention.

Firebase Console

Firebase Console is the central web interface for application management used by developers to enable and configure their Firebase products, as well as a common interface through which users can interact with individual Firebase products.

Firebase Crashlytics

Firebase Crashlytics is a lightweight, realtime crash reporter that helps developers track, prioritize, and fix stability issues that erode app quality. Crashlytics reduces troubleshooting time by grouping crashes and highlighting the circumstances that lead up to them.

Firebase Dynamic Links

Firebase Dynamic Links is a service that allows developers to create and manage smart URLs sending users to any location within their iOS, Android, or web application. Firebase Dynamic Links persists during the application install process, so even new users will see the content they are looking for when they open the app for the first time.

Firebase Hosting

Firebase Hosting Firebase Hosting is developer-focused web hosting for modern front-end web applications. Using Firebase Hosting, developers can deploy Secure Sockets Layer (SSL)-enabled web applications with static content and microservices to a global content-delivery network from a single command.

Firebase In-App Messaging

In-App Messaging enables developers to drive engagement by sending customized, targeted messages to their users, without any engineering effort, from the Firebase Console.

Firebase Performance Monitoring

Firebase Performance Monitoring is a service that helps developers to gain insight into the performance characteristics of their iOS and Android applications. Developers can use Performance Monitoring to collect performance data from their applications, and then review and analyze that data in the Firebase Console. Performance Monitoring helps developers understand where and when the performance of their applications can be improved so that they can use that information to fix performance issues.

Firebase Predictions

Predictions applies machine learning to a developer’s analytics data to create dynamic user groups based on their user’s predicted behavior. These predictions are automatically available for
use with Firebase Remote Config, the Notification composer which is a feature in the Firebase Console, and A/B Testing.

Firebase Realtime Database

The Firebase Realtime Database is a cloud-hosted, NoSQL database. Data can be synchronized in real time to every connected client. Developers can build cross-platform applications where clients share one Realtime Database instance and automatically receive updates with the newest data.

Firebase Remote Config

Firebase Remote Config allows developers to customize how their app renders for different user segments. Developers can change the app’s look and feel, roll out features gradually, run A/B tests, deliver customized content to certain users, or make other updates without deploying a new version – all from the Firebase Console.

Firebase User Segmentation Storage

Firebase User Segmentation Storage stores developer-created audience lists to provide targeting information to other Firebase services that use them.

Firebase Machine Learning

Firebase Machine Learning provides on-device and cloud APIs to give developers solutions to problems without requiring deep knowledge of machine learning, neural networks, or model optimization. Developers are also able to use this service to train and dynamically serve and update mobile optimized custom models to their users.

Data Centers

The above products are serviced from data centers operated by Google around the world. Below is a list of Google’s production data center locations that host the above products and operations for the Google Firebase system:

- Arcola (VA), United States of America
- Ashburn (1) (VA), United States of America
- Ashburn (2) (VA), United States of America
- Ashburn (3) (VA), United States of America
- Atlanta (1) (GA), United States of America
- Changhua, Taiwan
- Clarksville (TN), United States of America
- Council Bluffs (1) (IA), United States of America
- Council Bluffs (2) (IA), United States of America
- Dublin, Ireland
- Eemshaven, Groningen, the Netherlands
- Frankfurt (1), Hesse, Germany
- Frankfurt (2), Hesse, Germany
- Frankfurt (4), Hesse, Germany
- Ghlin, Hainaut, Belgium
Hamina, Finland
Henderson (NV), United States of America
Hong Kong (1), Hong Kong
Hong Kong (2), Hong Kong
Jakarta, Indonesia
Koto-ku (1), Tokyo, Japan
Koto-ku (2), Tokyo, Japan
Las Vegas (NV), United States of America
Leesburg (VA), United States of America
Lenoir (NC), United States of America
London (1), United Kingdom
London (2), United Kingdom
London (3), United Kingdom
Los Angeles (CA), United States of America
Middenmeer, Netherlands
Midlothian (TX), United States of America
Moncks Corner (SC), United States of America
Montreal, Quebec, Canada
Mumbai, India
New Albany (OH), United States of America
Osaka, Japan
Osasco, Brazil
Pryor Creek (OK), United States of America
Quilicura, Santiago, Chile
Salt Lake City (UT), United States of America
Seoul, South Korea
Sydney (1), NSW, Australia
Sydney (2), NSW, Australia
Sydney (3), NSW, Australia
The Dalles (1) (OR), United States of America
The Dalles (2) (OR), United States of America
Vinhedo, Brazil
Wenya, Singapore
Widows Creek (AL), United States of America
Zurich, Switzerland

Infrastructure

Google Firebase runs in a multi-tenant, distributed environment. Rather than segregating user entity data to one machine or set of machines, data from all user entities is distributed amongst a shared infrastructure. For Google Firebase, this is achieved through a Google distributed file system designed to store extremely large amounts of data across many servers. User entity data is then stored in large distributed databases, built on top of this file system.
Data Centers and Redundancy

Google maintains consistent policies and standards across all data centers for physical security to help protect production servers, network devices and network connections within Google data centers.

Redundant architecture exists such that data is replicated in real-time to at least two (2) geographically dispersed data centers. The data centers are connected through multiple encrypted network links and interfaces. This provides high availability by dynamically load balancing across those sites. Google uses a dashboard that provides details such as resource footprint, central processing unit capacity, and random-access memory availability to monitor resource availability across their data centers and to validate that data has been replicated to more than one location.

Authentication and Access

Strong authentication and access controls are implemented to restrict access to Google Firebase production systems, internal support tools, and customer data. Machine-level access restriction relies on a Google-developed distributed authentication service based on Transport Layer Security (TLS) certificates, which helps to positively identify the resource access requester. This service also offers transport encryption to enhance data confidentiality in transit. Data traffic is encrypted between Google production facilities.

Google follows a formal process to grant or revoke employee access to Google resources. Lightweight Directory Access Protocol (LDAP), Kerberos, and a Google proprietary system which utilizes Secure Shell (SSH) and TLS certificates help provide secure and flexible access mechanisms. These mechanisms are designed to grant access rights to systems and data only to authorized users.

Both user and internal access to customer data is restricted through the use of unique user account IDs. Access to sensitive systems and applications requires two-factor authentication in the form of a unique user account ID, strong passwords, security keys and/or certificates. Periodic reviews of access lists are implemented to help ensure access to customer data is appropriate and authorized. Access to production machines, network devices and support tools is managed via an access group management system. Membership in these groups must be approved by respective group administrators. User group memberships are reviewed on a semiannual basis under the direction of the group administrators.

Change Management

Change Management policies, including security code reviews and emergency fixes, are in place, and procedures for tracking, testing, approving, and validating changes are documented. Changes are developed utilizing the code versioning tool to manage source code, documentation, release labeling and other functions. Google requires all code changes to be reviewed and approved by a separate technical resource, other than the developer, to evaluate quality and accuracy of changes. Further, all application and configuration changes are tested prior to migration to the production environment. Following a successful pass of tests, multiple binaries are then grouped into a release and deployed to production.
Data
Google provides controls at each level of data storage, access, and transfer. Google has established training programs for privacy and information security to support data confidentiality. All employees are required to complete these training programs annually. All product feature launches that include new collection, processing, or sharing of user data are required to go through an internal design review process. Google has also established incident response processes to report and handle events related to security. Google establishes agreements, including nondisclosure agreements, for preserving confidentiality of information and software exchange with external parties.

Network Architecture and Management
The Google Firebase System architecture utilizes a fully redundant network infrastructure. Google has implemented perimeter devices to protect the Google network from external attacks. Network monitoring mechanisms are in place to prevent and disconnect access to the Google network from unauthorized devices.

People
Google has implemented a process-based service quality environment designed to deliver the Google Firebase products to customers. The fundamentals underlying the services provided are the adoption of standardized, repeatable processes; the hiring and development of highly skilled resources; and leading industry practices. Google has established internal compliance teams utilizing scalable processes to efficiently manage core infrastructure and product-related security, availability, and confidentiality controls.

Formal organizational structures exist and are available to Google employees on the Company’s intranet. The intranet provides drill-down functionality for identifying employees in the functional operations team. Google has developed and documented formal policies, procedures, and job descriptions for operational areas including data center operations, security administration, system and hardware change management, hiring, training, performance appraisals, terminations, and incident escalation. These policies and procedures have been designed to segregate duties and enforce responsibilities based on job functionality. Policies and procedures are reviewed and updated as necessary.
Attachment B - Principal Service Commitments and System Requirements

With regard to the effect of the COVID-19 pandemic, there were no significant changes to the Google Firebase System which resulted in the failure to meet Google’s principal service commitments and system requirements. Google has utilized existing technologies to migrate the workforce to a remote work environment, sustaining all business processes not requiring physical access to facilities. Functions requiring physical access to computer equipment and other hardware have undergone staff adjustments in order to maintain business operations and ensure the safety of personnel.

Service Commitments

Commitments are declarations made by management to customers regarding the performance of the Google Firebase System. Commitments to customers are communicated via Terms of Service, the Google Firebase Service Level Agreements, and Data Processing Addenda.

System Requirements

Google has implemented a process-based service quality environment designed to deliver the Google Firebase System products to customers. These internal policies are developed in consideration of legal and regulatory obligations, to define Google’s organizational approach and system requirements.

The delivery of these services depends upon the appropriate internal functioning of system requirements defined by Google to meet customer commitments.

The following processes and system requirements function to meet Google’s commitments to customers with respect to the terms governing the processing and security of customer data:

- Access Security: Google maintains data access and logical security policies, designed to prevent unauthorized persons and/or systems from gaining access to systems used to process personal data. Access to systems is restricted based on the principle of least privilege
- Change Management: Google requires standard change management procedures to be applied during the design, development, deployment, and maintenance of all Google Applications, Systems, and Services
- Incident Management: Google monitors a variety of communication channels for security incidents, and Google’s security personnel will react promptly to known incidents
- Data Management: Google complies with any obligations applicable to it with respect to the processing of Customer Personal Data. Google processes data in accordance with the customer instructions and complies with applicable regulations
- Data Security: Google implements and maintains technical and organizational measures to protect customer data against accidental or unlawful destruction, loss, alteration, unauthorized disclosure or access. Google takes appropriate steps to ensure compliance with the security measures by its employees, contractors and sub-processors to the extent applicable to their scope of performance
- Third-Party Risk Management: Google conducts routine inspections of sub-processors to evaluate control conformance. Google defines the security and privacy obligations which the sub-processor must meet to satisfy Google’s obligations regarding customer data, prior to Google granting access to customer data