
Ad Format Adoption Testing
with Firebase

Implementation Guide

1

Contents

03 Implementation guide

03 Prerequisites

17 Glossary

Products & features covered

Google
AdMob

Firebase
A/B Testing

Google
Analytics

Firebase
Remote Config

Ad Format Adoption Testing with Firebase - Implementation Guide 2

Implementation guide

This Implementation Guide goes through implementing and testing a new Google AdMob ad format
for your app, and it's using a rewarded interstitial ad as the example test case. Keep in mind, though,
you can extrapolate and use these same steps to test out other ad formats, too.

This guide assumes that you already use AdMob in your app and that you'd like to test whether adding
another ad unit (with a new ad format) will have an impact on your app's revenue or other metrics. But
if you don't already use AdMob in your app, that's ok! The steps in this guide can also help you
understand if simply adding an ad unit to your app has an impact on your app's metrics.

Tip: If there's a term that you're not familiar with, check out the glossary at the end of this
Implementation Guide.

Prerequisites

➤ AdMob App that's linked to a Firebase App (learn more)

➤ An iOS, Android, or Unity project with the following libraries:

◆ Google Mobile Ads (AdMob) SDK
◆ Firebase SDK for Google Analytics
◆ Firebase Remote Config SDK

The steps in this guide will show you how and when to add these libraries.
Using the latest version of each library is recommended.

Ad Format Adoption Testing with Firebase - Implementation Guide 3

https://support.google.com/admob/answer/9884467?hl=en
https://support.google.com/admob/answer/6128738
https://support.google.com/admob/answer/6383165

Step 1
➤ Use AdMob to create a new ad unit variant for testing

This guide uses the rewarded interstitial ad format as the new format being tested for
adoption. When reading this guide, though, keep in mind that you could follow similar steps to
implement and test any other ad formats.

1. In your AdMob account, create the ad unit that you want to test with your users.

For this guide, create a single new ad unit with the ad format of Rewarded interstitial. The other
ad unit settings aren't important for this particular guide, so select settings that are appropriate
for your app.

Ad Format Adoption Testing with Firebase - Implementation Guide 4

https://support.google.com/admob/answer/9884467?hl=en

2. After you create the ad unit, AdMob provides you with the ad unit's unique ad unit ID.

Remember where to find this ad unit ID in your AdMob account as you'll need it to implement
the ad into your app.

Follow the on-screen instructions to integrate the Google Mobile Ads (AdMob) SDK and to
implement the new ad unit into your app.

Ad Format Adoption Testing with Firebase - Implementation Guide 5

Step 2
➤ Set up an A/B test in the Firebase console

Firebase A/B Testing makes it easy to test and analyze the effects of adding the rewarded
interstitial ad to your app. In actuality, this testing and analyzing utilizes the following products:

◆ Firebase A/B Testing (this step) - define goals and configurable parameters for your
test

◆ Firebase Remote Config (next step) - add logic to your code to handle the
configuration of the parameters

◆ Google Analytics (runs behind the scenes) - measures the impact of the
configurations

To initiate a controlled test over adopting a new ad format, start by navigating to the A/B
Testing section of the Firebase console. Click Create experiment, then select Remote Config.

Ad Format Adoption Testing with Firebase - Implementation Guide 6

1. Set up the basics
In the Basics section, define the experiment name and the experiment description.

2. Set up targeting
In the Targeting section, select the iOS or Android app (or Unity game for either of these
platforms) that the experiment will target.

You also need to set the percentage of users who will be exposed to the experiment. For this
guide, the new ad unit will be tested with 10% of your users. Note that this doesn't mean that
10% of all your users will see the new ad format; this means that 10% of your users will be part
of the experiment to see or not see the new ad format.

Leave all other settings as their defaults.

Note: Due to the different user behavior patterns observed from iOS and Android users,
each A/B test can only target either the iOS or Android version of your app.

To run the same test for both platforms of your app (as well as for Unity games), set up an
experiment for one platform, then duplicate the test settings in a second experiment. In this
second experiment, select the other platform of your app in the Targeting section.

Ad Format Adoption Testing with Firebase - Implementation Guide 7

3. Set up your goals
Firebase A/B Testing tracks a primary metric to determine the winning variant, but it also allows
you to add secondary metrics to understand the impacts of different configurations on other
important factors for your app.

For this guide, Estimated AdMob revenue optimization is the primary goal, so select it from the
dropdown menu. If you want A/B Testing to track additional metrics, like Estimated total
revenue or different retention rates, select those by clicking Add metric.

Ad Format Adoption Testing with Firebase - Implementation Guide 8

4. Set up the variants
The last step of configuring an A/B test is defining a Remote Config parameter that controls
whether the new ad unit will be shown to users.

In the Variants section, create a new parameter named SHOW_NEW_AD_KEY by typing it in the
Parameter field of the Baseline card.

For this guide, the Baseline variant will not show the new ad format to users at all, but the
Variant A variant will show the new ad format to a small subset of users. This is controlled by
the parameter's boolean value. These values are set here in Firebase A/B Testing, but it's
Firebase Remote Config that sends these values to your app's code for handling. You'll set up
Remote Config in the next step.

Complete your setup of the Variants section using the following settings:

◆ Baseline: Parameter of SHOW_NEW_AD_KEY set to a Value of false (which means: do
not show new ad format)

◆ Variant A: Parameter of SHOW_NEW_AD_KEY set to a Value of true (which means: show
new ad format)

Note: In your own future tests, if you set up various experiments and variants, we
recommend giving variants meaningful names to easily track the test results later on.

Before you can start the experiment, though, you need to define how your app's code will
react to the true or false parameter value received from Firebase. Proceed to
the next step to implement the handling of the Remote Config parameter: SHOW_NEW_AD_KEY.

Ad Format Adoption Testing with Firebase - Implementation Guide 9

Step 3
➤ Handle Remote Config parameter values in your app's code

1. Add the required SDKs

Before using Remote Config in your application code, add both the Remote Config SDK and
the Firebase SDK for Google Analytics to your project build files.

We recommend using the latest version of each SDK available, which may not be reflected in
the code snippets below.

Android (Java) - Add the following library dependencies to your build.gradle file

implementation 'com.google.android.gms:play-services-ads:20.1.0'
implementation 'com.google.firebase:firebase-analytics:19.0.0'
implementation 'com.google.firebase:firebase-config:21.0.0'

iOS (Swift) - Add and install the following pods in your podfile

pod 'Google-Mobile-Ads-SDK'
pod 'Firebase/Analytics'
pod 'Firebase/RemoteConfig'

Unity - Install the Firebase Unity SDK and relevant Unity packages
Download and install the Firebase Unity SDK, then add the following Unity packages to your
project:
- FirebaseAnalytics.unitypackage
- FirebaseRemoteConfig.unitypackage

Ad Format Adoption Testing with Firebase - Implementation Guide 10

https://firebase.google.com/docs/unity/setup#add-sdks

2. Configure Remote Config instance

To use the Remote Config parameter values, configure the Remote Config instance so that it is
set up to fetch new values for the client app instance.

In this example, Remote Config is configured to check for new parameter values once every
hour.

Android (Java)

mFirebaseRemoteConfig = FirebaseRemoteConfig.getInstance();
FirebaseRemoteConfigSettings configSettings = new
FirebaseRemoteConfigSettings.Builder()

.setMinimumFetchIntervalInSeconds(3600)

.build();
mFirebaseRemoteConfig.setConfigSettingsAsync(configSettings);

iOS (Swift)

remoteConfig = RemoteConfig.remoteConfig()
let settings = RemoteConfigSettings()
settings.minimumFetchInterval = 3600
remoteConfig.configSettings = settings

Unity

var remoteConfig = FirebaseRemoteConfig.DefaultInstance;
var configSettings = new ConfigSettings {
MinimumFetchInternalInMilliseconds =

(ulong)(new TimeSpan(1, 0, 0).TotalMilliseconds)
};
remoteConfig.SetConfigSettingsAsync(configSettings)

.ContinueWithOnMainThread(task => {
Debug.Log(“Config settings confirmed”);

}

Ad Format Adoption Testing with Firebase - Implementation Guide 11

3. Fetch and activate Remote Config parameters

Fetch and activate the Remote Config parameters so that you can start using the new
parameter values:

Android (Java)

mFirebaseRemoteConfig.fetchAndActivate()
.addOnCompleteListener(this, new OnCompleteListener<Boolean>() {

@Override
public void onComplete(@NonNull Task<Boolean> task) {

if (task.isSuccessful()) {
boolean updated = task.getResult();
Log.d(TAG, "Config params updated: " + updated);

} else {
Log.d(TAG, "Config params failed to update);

}
loadAdUnit();

}
});

iOS (Swift)

remoteConfig.fetch() { (status, error) -> Void in
if status == .success {
print("Config fetched!")
self.remoteConfig.activate() { (changed, error) in
// ...

}
} else {
print("Config not fetched")
print("Error: \(error?.localizedDescription ?? "No error available.")")

}
self.loadAdUnit()

}

Unity

remoteConfig.FetchAndActivateAsync().ContinueWithOnMainThread(task => {
if (task.IsFaulted) {
Debug.LogWarning("Config params failed to update");

} else {
Debug.Log("Config params updated: " + task.Result);

}
LoadAdUnit();

});

Your app is now ready to handle the Remote Config parameter that you created during the A/B
test setup above. You'll want to make this call as early as possible in your app's loading phase
because this call is asynchronous and you'll need the Remote Config value pre-fetched so that
your app knows whether to show the ad.

Ad Format Adoption Testing with Firebase - Implementation Guide 12

4. Use the Remote Config parameter value

Use the pre-fetched Remote Config value in the loadAdUnit() function to determine whether
the app instance should show (parameter value of true) or not show (parameter value of
false) the new rewarded interstitial ad unit.

Android (Java)

private void loadAdUnit() {
boolean showNewAdFormat =
mFirebaseRemoteConfig.getBoolean(SHOW_NEW_AD_KEY);

if (showNewAdFormat) {
// Load Rewarded Interstitial Ad (new implemented ad unit)
// per AdMob instructions (the first step of this guide).

} else {
// Show the existing ad unit.

}
}

iOS (Swift)

private func loadAdUnit() {
let showNewAdFormat = remoteConfig["SHOW_NEW_AD_KEY"].boolValue
if showNewAdFormat {
// Load Rewarded Interstitial Ad (new implemented ad unit)
// per AdMob instructions (the first step of this guide).

} else {
// Show the existing ad unit.

}
}

Unity

void LoadAdUnit() {
bool showNewAdFormat =

remoteConfig.GetValue(“SHOW_NEW_AD_KEY”).BooleanValue;

if (showNewAdFormat) {
// Load Rewarded Interstitial Ad (new implemented ad unit)
// per AdMob instructions (the first step of this guide).

} else {
// Show the existing ad unit.

}
}

Note: In production code, you should also add a type and null check on retrieved
Remote Config parameter values.

Ad Format Adoption Testing with Firebase - Implementation Guide 13

5. Add other checks for the parameter value

There are other areas in your application code where you'll need to check the value of this
Remote Config parameter to instruct which ad experience will be loaded. For example, when
deciding whether to reload an ad after the user has finished viewing the current one.

The fetch and activate calls should be made first to get any parameter value changes - for
example if you decide to end or create a new experiment.

From there you can always check the value for the parameter using the following calls:

◆ Android (Java) – mFirebaseRemoteConfig.getBoolean(SHOW_NEW_AD_KEY)

◆ iOS (Swift) – remoteConfig[“showNewAdKey”].boolValue

◆ Unity – remoteConfig.GetValue(“SHOW_NEW_AD_KEY”).BooleanValue

These calls will always return the same value for an app instance depending on whether it was
placed in the control group or the new ad variant group, unless any changes were made in the
Firebase console that were fetched and activated in the previous calls.

Ad Format Adoption Testing with Firebase - Implementation Guide 14

Step 4
➤ Start the A/B test and review the test results in the Firebase console

After you add the logic to handle the Remote Config parameter value (previous step) and
deploy the latest builds that include them, start the A/B test by clicking Start Experiment in
the Firebase console.

Firebase A/B Testing will run your experiment. After it has exposed users to the different
variants, the Firebase console will display an improvement suggestion. You can review how
each variant performed based on the metrics that you selected during test setup.

Firebase A/B Testing makes its judgement based on the primary metric that you selected, but
A/B Testing also provides you with data for all the other secondary metrics that you selected.
This allows you to take into account these secondary metrics when making a final judgement
about the performance of a variant.

The image below shows an example of a test run with 4 variants, including the baseline (note
that in this guide we kept it more simple with only two variants). A/B Testing has determined
that the winning variant is Variant A due to the improvements in the primary metric of
Estimated total revenue.

Ad Format Adoption Testing with Firebase - Implementation Guide 15

Step 5
➤ Decide whether to roll out the new ad format

If A/B Testing determines that the variant showing the new ad format is the winner, you can
start showing the ad format to all users targeted in the experiment for your app – just click the
Roll out variant button in the A/B Testing page.

Alternatively, if a winner is determined, you can end the experiment, then set the Remote
Config parameter value to the winning variant's value. You can make this be the setting for all
your users or even just a subset of your users.

However, if a clear winner isn't yet determined, you can either continue running the experiment
to gather more data, or end the experiment if it's already been running for a long period with
inconclusive results.

Ad Format Adoption Testing with Firebase - Implementation Guide 16

Glossary

AdMob Revenue: AdMob network and open bidding revenue

IAP Revenue: In app purchases revenue

Total Revenue: Total revenue

Retention: Retention as a key metric in A/B tests is tracked as 1-day, 2-3 days, 4-7 days, 8-14 days, or
15+ days user retention.

Remote Config Parameter: The configurable parameter used to control whether we show the new
ad format or not. In this guide, it will be a boolean value.

Baseline Configuration: The as-is configuration in any particular A/B test - also known as the control.
The control usually uses the default value for the Remote Config parameter, but it can be configured
to use a new control value if needed.

Variant Configurations: The variant configurations are the alternative configurations with different
Remote Config parameter values that we would like to test against the baseline configuration.

Ad Format Adoption Testing with Firebase - Implementation Guide 17

Thank you!

Ad Format Adoption Testing with Firebase - Implementation Guide 18

