Использование LangChain с Genkit

Установка

npm i --save genkitx-langchain

Использование

Вы можете использовать большинство цепочек или утилит LangChain в потоках Genkit как есть. В приведенном ниже примере используются средства извлечения LangChain, загрузчики документов и конструкции цепочек для создания простого образца RAG.

import { initializeGenkit } from '@genkit-ai/core';
import { defineFlow, run, startFlowsServer } from '@genkit-ai/flow';
import { GoogleVertexAIEmbeddings } from '@langchain/community/embeddings/googlevertexai';
import { GoogleVertexAI } from '@langchain/community/llms/googlevertexai';
import { StringOutputParser } from '@langchain/core/output_parsers';
import { PromptTemplate } from '@langchain/core/prompts';
import {
  RunnablePassthrough,
  RunnableSequence,
} from '@langchain/core/runnables';
import { GenkitTracer } from 'genkitx-langchain';
import { PDFLoader } from 'langchain/document_loaders/fs/pdf';
import { formatDocumentsAsString } from 'langchain/util/document';
import { MemoryVectorStore } from 'langchain/vectorstores/memory';
import * as z from 'zod';

import config from './genkit.config';

initializeGenkit(config);

const vectorStore = new MemoryVectorStore(new GoogleVertexAIEmbeddings());
const model = new GoogleVertexAI();

export const indexPdf = defineFlow(
  { name: 'indexPdf', inputSchema: z.string(), outputSchema: z.void() },
  async (filePath) => {
    const docs = await run('load-pdf', async () => {
      return await new PDFLoader(filePath).load();
    });
    await run('index', async () => {
      vectorStore.addDocuments(docs);
    });
  }
);

const prompt =
  PromptTemplate.fromTemplate(`Answer the question based only on the following context:
{context}

Question: {question}`);
const retriever = vectorStore.asRetriever();

export const pdfQA = defineFlow(
  { name: 'pdfQA', inputSchema: z.string(), outputSchema: z.string() },
  async (question) => {
    const chain = RunnableSequence.from([
      {
        context: retriever.pipe(formatDocumentsAsString),
        question: new RunnablePassthrough(),
      },
      prompt,
      model,
      new StringOutputParser(),
    ]);

    return await chain.invoke(question, { callbacks: [new GenkitTracer()] });
  }
);

startFlowsServer();

Обратите внимание, что в примере используется GenkitTracer , предоставляемый плагином genkitx-langchain для оснащения цепочек LangChain функциями наблюдения Genkit. Теперь, когда вы запускаете поток из пользовательского интерфейса разработки или в рабочей среде, вы получите полную видимость цепочек LangChain.

Также обратите внимание, что компоненты LangChain не совместимы с примитивами Genkit (моделями, документами, ретриверами и т. д.).

Оценщики (Предварительный просмотр)

Вы можете использовать оценщики LangChain с Genkit. Настройте, какие оценщики вам нужны, с помощью плагина langchain , а затем следуйте стандартному процессу оценки:

import { langchain } from 'genkitx-langchain';

configureGenkit({
  plugins: [
    langchain({
      evaluators: {
        judge: gemini15Flash,
        criteria: ['harmfulness', 'maliciousness'],
      },
    }),
  ],
});