Gemini 2.5模型可以使用内部“思考过程”,显著提升其推理和多步规划能力,使其能够高效处理编码、高等数学和数据分析等复杂任务。
思考模型提供以下配置和选项:
思考预算:您可以使用思考预算来配置模型可以进行的“思考”量。如果降低延迟时间或成本是首要考虑因素,此配置就显得尤为重要。此外,请查看任务难度比较,以确定模型可能需要多少思维能力。
思路总结:您可以启用思路总结,以便在生成的回答中包含思路总结。这些摘要是模型原始想法的合成版本,可帮助您深入了解模型的内部推理过程。
思路签名:Firebase AI Logic SDK 会自动处理思路签名,从而确保模型在调用函数时能够访问之前对话轮次的思路上下文。
请务必查看有关使用思维模型的最佳实践和提示指南。
使用思考模型
像使用任何其他 Gemini 模型一样使用思维模型(初始化所选的 Gemini API 提供程序、创建 GenerativeModel
实例等)。这些模型可用于文本或代码生成任务,例如生成结构化输出或分析多模态输入(例如图片、视频、音频或 PDF)。
您甚至可以在流式传输输出时使用思维模型。
支持此功能的模型
只有 Gemini 2.5 型号支持此功能。
gemini-2.5-pro
gemini-2.5-flash
gemini-2.5-flash-lite
使用思维模型的最佳实践和提示指南
建议您在 Google AI Studio 或 Vertex AI Studio 中测试提示,以便查看完整的思考过程。您可以找出模型可能出错的任何方面,以便改进提示,从而获得更一致、更准确的回答。
首先提供一个描述预期结果的一般提示,然后观察模型在确定回答时的初步想法。如果回答不尽如人意,请使用以下任一提示技巧来帮助模型生成更好的回答:
- 提供分步指令
- 提供多个输入-输出对示例
- 提供有关输出和回答应如何措辞和设置格式的指南
- 提供具体的验证步骤
除了提示之外,您还可以考虑使用以下建议:
设置系统指令,该指令就像一段“序言”,在模型接收到提示或最终用户的进一步指令之前添加。它们可让您根据自己的特定需求和使用情形来控制模型的行为。
设置思考预算,以配置模型可进行的思考量。如果您设置的预算较低,模型就不会“过度思考”其回答。如果您设置了较高的预算,模型就可以在需要时进行更多思考。设置思考预算还可以为实际回答预留更多总 token 输出限额。
启用 Firebase 控制台中的 AI 监控,以监控启用思考功能的请求的思考词元数和延迟时间。如果您已启用思路总结,它们会显示在控制台中,您可以在其中检查模型的详细推理过程,以便调试和优化提示。
控制思考预算
如需控制模型在生成回答时可进行的思考量,您可以指定允许其使用的思考预算 token 数量。
如果您需要比默认思考预算更多或更少的 token,则可以手动设置思考预算。如需详细了解任务复杂程度和建议预算,请参阅本部分后面的内容。以下是一些简要指南:
- 如果延迟时间很重要,或者任务不太复杂,请设置较低的思考预算
- 为更复杂的任务设置较高的思考预算
设置思考预算
点击您的 Gemini API 提供商,以查看此页面上特定于提供商的内容和代码。 |
在创建 GenerativeModel
实例时,在 GenerationConfig
中设置思考预算。该配置在实例的整个生命周期内保持不变。如果您想为不同的请求使用不同的思考预算,请创建配置了相应预算的 GenerativeModel
实例。
如需了解支持的思考预算值,请参阅本部分后面的内容。
Swift
在创建 GenerativeModel
实例时,在 GenerationConfig
中设置思考预算。
// ...
// Set the thinking configuration
// Use a thinking budget value appropriate for your model (example value shown here)
let generationConfig = GenerationConfig(
thinkingConfig: ThinkingConfig(thinkingBudget: 1024)
)
// Specify the config as part of creating the `GenerativeModel` instance
let model = FirebaseAI.firebaseAI(backend: .googleAI()).generativeModel(
modelName: "GEMINI_MODEL_NAME",
generationConfig: generationConfig
)
// ...
Kotlin
在创建 GenerativeModel
实例时,设置 GenerationConfig
中参数的值。
// ...
// Set the thinking configuration
// Use a thinking budget value appropriate for your model (example value shown here)
val generationConfig = generationConfig {
thinkingConfig = thinkingConfig {
thinkingBudget = 1024
}
}
// Specify the config as part of creating the `GenerativeModel` instance
val model = Firebase.ai(backend = GenerativeBackend.googleAI()).generativeModel(
modelName = "GEMINI_MODEL_NAME",
generationConfig,
)
// ...
Java
在创建 GenerativeModel
实例时,设置 GenerationConfig
中参数的值。
// ...
// Set the thinking configuration
// Use a thinking budget value appropriate for your model (example value shown here)
ThinkingConfig thinkingConfig = new ThinkingConfig.Builder()
.setThinkingBudget(1024)
.build();
GenerationConfig generationConfig = GenerationConfig.builder()
.setThinkingConfig(thinkingConfig)
.build();
// Specify the config as part of creating the `GenerativeModel` instance
GenerativeModelFutures model = GenerativeModelFutures.from(
FirebaseAI.getInstance(GenerativeBackend.googleAI())
.generativeModel(
/* modelName */ "GEMINI_MODEL_NAME",
/* generationConfig */ generationConfig
);
);
// ...
Web
在创建 GenerativeModel
实例时,设置 GenerationConfig
中参数的值。
// ...
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });
// Set the thinking configuration
// Use a thinking budget value appropriate for your model (example value shown here)
const generationConfig = {
thinkingConfig: {
thinkingBudget: 1024
}
};
// Specify the config as part of creating the `GenerativeModel` instance
const model = getGenerativeModel(ai, { model: "GEMINI_MODEL_NAME", generationConfig });
// ...
Dart
在创建 GenerativeModel
实例时,设置 GenerationConfig
中参数的值。
// ...
// Set the thinking configuration
// Use a thinking budget value appropriate for your model (example value shown here)
final thinkingConfig = ThinkingConfig(thinkingBudget: 1024);
final generationConfig = GenerationConfig(
thinkingConfig: thinkingConfig
);
// Specify the config as part of creating the `GenerativeModel` instance
final model = FirebaseAI.googleAI().generativeModel(
model: 'GEMINI_MODEL_NAME',
config: generationConfig,
);
// ...
Unity
在创建 GenerativeModel
实例时,设置 GenerationConfig
中参数的值。
// ...
// Set the thinking configuration
// Use a thinking budget value appropriate for your model (example value shown here)
var thinkingConfig = new ThinkingConfig(thinkingBudget: 1024);
var generationConfig = new GenerationConfig(
thinkingConfig: thinkingConfig
);
// Specify the config as part of creating the `GenerativeModel` instance
var model = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI()).GetGenerativeModel(
modelName: "GEMINI_MODEL_NAME",
generationConfig: generationConfig
);
// ...
支持的思考预算值
下表列出了您可以为每个模型设置的思考预算值,方法是配置模型的 thinkingBudget
。
型号 | 默认值 | 思考预算的可用范围 |
用于 停用思考的值 |
价值: 培养动态思维 |
|
---|---|---|---|---|---|
最小值 | 最大值 | ||||
Gemini 2.5 Pro | 8,192 |
128 |
32,768 |
无法关闭 | -1 |
Gemini 2.5 Flash | 8,192 |
1 |
24,576 |
0 |
-1 |
Gemini 2.5 Flash‑Lite | 0 (默认情况下,思考处于停用状态) |
512 |
24,576 |
0 (或完全不配置思考预算) |
-1 |
停用思考
对于某些较简单的任务,无需思考能力,传统推理就足够了。或者,如果缩短延迟时间是首要任务,您可能不希望模型花费不必要的时间来生成回答。
在这些情况下,您可以停用(或关闭)思考:
- Gemini 2.5 Pro:思考无法停用
- Gemini 2.5 Flash:将
thinkingBudget
设置为0
个令牌 - Gemini 2.5 Flash‑Lite:默认情况下,思考处于停用状态
培养动态思维
您可以将 thinkingBudget
设置为 -1
,让模型自行决定何时进行思考以及思考的程度(称为动态思考)。模型可以使用其认为合适的任意数量的 token,但不得超过上述最大 token 值。
任务复杂程度
简单任务 - 无需思考
不需要复杂推理的简单请求,例如事实检索或分类。示例:- “DeepMind 是在哪里成立的?”
- “这封电子邮件是要求安排会议,还是仅提供信息?”
中等任务 - 需要默认预算或一些额外的思考预算
需要一定程度的逐步处理或更深入理解的常见请求。示例:- “将光合作用和成长进行类比。”
- “比较和对比电动汽车与混合动力汽车。”
困难任务 - 可能需要最大思考预算
真正复杂的挑战,例如解决复杂的数学问题或编码任务。这类任务要求模型充分发挥推理和规划能力,通常需要在提供答案之前执行许多内部步骤。示例:- “解决 2025 年 AIME 中的问题 1:求出所有整数底数 b > 9 的总和,其中 17b 是 97b 的除数。”
- “编写一个 Python Web 应用,用于直观呈现实时股市数据,包括用户身份验证。尽可能提高效率。”
在回答中包含思考总结
思考总结是模型原始想法的合成版本,可让您深入了解模型的内部推理过程。
以下是回复中包含思路总结的一些原因:
您可以在应用的界面中显示思维总结,也可以让用户访问这些总结。思维总结会作为响应中的单独部分返回,以便您更好地控制如何在应用中使用它。
如果您还在 Firebase 控制台中启用 AI 监控,系统会在控制台中显示思路总结,您可以在其中检查模型的详细推理过程,以便调试和优化提示。
以下是有关思路总结的一些重要说明:
启用思考总结
点击您的 Gemini API 提供商,以查看此页面上特定于提供商的内容和代码。 |
您可以在模型配置中将 includeThoughts
设置为 true,以启用思路总结。然后,您可以通过检查响应中的 thoughtSummary
字段来访问摘要。
以下示例展示了如何启用并检索包含在回答中的思路总结:
Swift
在创建 GenerativeModel
实例时,在 GenerationConfig
中启用思路总结。
// ...
// Set the thinking configuration
// Optionally enable thought summaries in the generated response (default is false)
let generationConfig = GenerationConfig(
thinkingConfig: ThinkingConfig(includeThoughts: true)
)
// Specify the config as part of creating the `GenerativeModel` instance
let model = FirebaseAI.firebaseAI(backend: .googleAI()).generativeModel(
modelName: "GEMINI_MODEL_NAME",
generationConfig: generationConfig
)
let response = try await model.generateContent("solve x^2 + 4x + 4 = 0")
// Handle the response that includes thought summaries
if let thoughtSummary = response.thoughtSummary {
print("Thought Summary: \(thoughtSummary)")
}
guard let text = response.text else {
fatalError("No text in response.")
}
print("Answer: \(text)")
Kotlin
在创建 GenerativeModel
实例时,在 GenerationConfig
中启用思路总结。
// ...
// Set the thinking configuration
// Optionally enable thought summaries in the generated response (default is false)
val generationConfig = generationConfig {
thinkingConfig = thinkingConfig {
includeThoughts = true
}
}
// Specify the config as part of creating the `GenerativeModel` instance
val model = Firebase.ai(backend = GenerativeBackend.googleAI()).generativeModel(
modelName = "GEMINI_MODEL_NAME",
generationConfig,
)
val response = model.generateContent("solve x^2 + 4x + 4 = 0")
// Handle the response that includes thought summaries
response.thoughtSummary?.let {
println("Thought Summary: $it")
}
response.text?.let {
println("Answer: $it")
}
Java
在创建 GenerativeModel
实例时,在 GenerationConfig
中启用思路总结。
// ...
// Set the thinking configuration
// Optionally enable thought summaries in the generated response (default is false)
ThinkingConfig thinkingConfig = new ThinkingConfig.Builder()
.setIncludeThoughts(true)
.build();
GenerationConfig generationConfig = GenerationConfig.builder()
.setThinkingConfig(thinkingConfig)
.build();
// Specify the config as part of creating the `GenerativeModel` instance
GenerativeModelFutures model = GenerativeModelFutures.from(
FirebaseAI.getInstance(GenerativeBackend.googleAI())
.generativeModel(
/* modelName */ "GEMINI_MODEL_NAME",
/* generationConfig */ generationConfig
);
);
// Handle the response that includes thought summaries
ListenableFuture responseFuture = model.generateContent("solve x^2 + 4x + 4 = 0");
Futures.addCallback(responseFuture, new FutureCallback() {
@Override
public void onSuccess(GenerateContentResponse response) {
if (response.getThoughtSummary() != null) {
System.out.println("Thought Summary: " + response.getThoughtSummary());
}
if (response.getText() != null) {
System.out.println("Answer: " + response.getText());
}
}
@Override
public void onFailure(Throwable t) {
// Handle error
}
}, MoreExecutors.directExecutor());
Web
在创建 GenerativeModel
实例时,在 GenerationConfig
中启用思路总结。
// ...
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });
// Set the thinking configuration
// Optionally enable thought summaries in the generated response (default is false)
const generationConfig = {
thinkingConfig: {
includeThoughts: true
}
};
// Specify the config as part of creating the `GenerativeModel` instance
const model = getGenerativeModel(ai, { model: "GEMINI_MODEL_NAME", generationConfig });
const result = await model.generateContent("solve x^2 + 4x + 4 = 0");
const response = result.response;
// Handle the response that includes thought summaries
if (response.thoughtSummary()) {
console.log(`Thought Summary: ${response.thoughtSummary()}`);
}
const text = response.text();
console.log(`Answer: ${text}`);
Dart
在创建 GenerativeModel
实例时,在 GenerationConfig
中启用思路总结。
// ...
// Set the thinking configuration
// Optionally enable thought summaries in the generated response (default is false)
final thinkingConfig = ThinkingConfig(includeThoughts: true);
final generationConfig = GenerationConfig(
thinkingConfig: thinkingConfig
);
// Specify the config as part of creating the `GenerativeModel` instance
final model = FirebaseAI.googleAI().generativeModel(
model: 'GEMINI_MODEL_NAME',
generationConfig: generationConfig,
);
final response = await model.generateContent('solve x^2 + 4x + 4 = 0');
// Handle the response that includes thought summaries
if (response.thoughtSummary != null) {
print('Thought Summary: ${response.thoughtSummary}');
}
if (response.text != null) {
print('Answer: ${response.text}');
}
Unity
在创建 GenerativeModel
实例时,在 GenerationConfig
中启用思路总结。
// ...
// Set the thinking configuration
// Optionally enable thought summaries in the generated response (default is false)
var thinkingConfig = new ThinkingConfig(includeThoughts: true);
var generationConfig = new GenerationConfig(
thinkingConfig: thinkingConfig
);
// Specify the config as part of creating the `GenerativeModel` instance
var model = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI()).GetGenerativeModel(
modelName: "GEMINI_MODEL_NAME",
generationConfig: generationConfig
);
var response = await model.GenerateContentAsync("solve x^2 + 4x + 4 = 0");
// Handle the response that includes thought summaries
if (response.ThoughtSummary != null) {
Debug.Log($"Thought Summary: {response.ThoughtSummary}");
}
if (response.Text != null) {
Debug.Log($"Answer: {response.Text}");
}
流式传输思考总结
如果您选择使用 generateContentStream
对回答进行流式传输,还可以查看思路总结。这将在生成响应期间返回滚动增量摘要。
Swift
在创建 GenerativeModel
实例时,在 GenerationConfig
中启用思路总结。
// ...
// Set the thinking configuration
// Optionally enable thought summaries in the generated response (default is false)
let generationConfig = GenerationConfig(
thinkingConfig: ThinkingConfig(includeThoughts: true)
)
// Specify the config as part of creating the `GenerativeModel` instance
let model = FirebaseAI.firebaseAI(backend: .googleAI()).generativeModel(
modelName: "GEMINI_MODEL_NAME",
generationConfig: generationConfig
)
let stream = try model.generateContentStream("solve x^2 + 4x + 4 = 0")
// Handle the streamed response that includes thought summaries
var thoughts = ""
var answer = ""
for try await response in stream {
if let thought = response.thoughtSummary {
if thoughts.isEmpty {
print("--- Thoughts Summary ---")
}
print(thought)
thoughts += thought
}
if let text = response.text {
if answer.isEmpty {
print("--- Answer ---")
}
print(text)
answer += text
}
}
Kotlin
在创建 GenerativeModel
实例时,在 GenerationConfig
中启用思路总结。
// ...
// Set the thinking configuration
// Optionally enable thought summaries in the generated response (default is false)
val generationConfig = generationConfig {
thinkingConfig = thinkingConfig {
includeThoughts = true
}
}
// Specify the config as part of creating the `GenerativeModel` instance
val model = Firebase.ai(backend = GenerativeBackend.googleAI()).generativeModel(
modelName = "GEMINI_MODEL_NAME",
generationConfig,
)
// Handle the streamed response that includes thought summaries
var thoughts = ""
var answer = ""
model.generateContentStream("solve x^2 + 4x + 4 = 0").collect { response ->
response.thoughtSummary?.let {
if (thoughts.isEmpty()) {
println("--- Thoughts Summary ---")
}
print(it)
thoughts += it
}
response.text?.let {
if (answer.isEmpty()) {
println("--- Answer ---")
}
print(it)
answer += it
}
}
Java
在创建 GenerativeModel
实例时,在 GenerationConfig
中启用思路总结。
// ...
// Set the thinking configuration
// Optionally enable thought summaries in the generated response (default is false)
ThinkingConfig thinkingConfig = new ThinkingConfig.Builder()
.setIncludeThoughts(true)
.build();
GenerationConfig generationConfig = GenerationConfig.builder()
.setThinkingConfig(thinkingConfig)
.build();
// Specify the config as part of creating the `GenerativeModel` instance
GenerativeModelFutures model = GenerativeModelFutures.from(
FirebaseAI.getInstance(GenerativeBackend.googleAI())
.generativeModel(
/* modelName */ "GEMINI_MODEL_NAME",
/* generationConfig */ generationConfig
);
);
// Streaming with Java is complex and depends on the async library used.
// This is a conceptual example using a reactive stream.
Flowable responseStream = model.generateContentStream("solve x^2 + 4x + 4 = 0");
// Handle the streamed response that includes thought summaries
StringBuilder thoughts = new StringBuilder();
StringBuilder answer = new StringBuilder();
responseStream.subscribe(response -> {
if (response.getThoughtSummary() != null) {
if (thoughts.length() == 0) {
System.out.println("--- Thoughts Summary ---");
}
System.out.print(response.getThoughtSummary());
thoughts.append(response.getThoughtSummary());
}
if (response.getText() != null) {
if (answer.length() == 0) {
System.out.println("--- Answer ---");
}
System.out.print(response.getText());
answer.append(response.getText());
}
}, throwable -> {
// Handle error
});
Web
在创建 GenerativeModel
实例时,在 GenerationConfig
中启用思路总结。
// ...
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });
// Set the thinking configuration
// Optionally enable thought summaries in the generated response (default is false)
const generationConfig = {
thinkingConfig: {
includeThoughts: true
}
};
// Specify the config as part of creating the `GenerativeModel` instance
const model = getGenerativeModel(ai, { model: "GEMINI_MODEL_NAME", generationConfig });
const result = await model.generateContentStream("solve x^2 + 4x + 4 = 0");
// Handle the streamed response that includes thought summaries
let thoughts = "";
let answer = "";
for await (const chunk of result.stream) {
if (chunk.thoughtSummary()) {
if (thoughts === "") {
console.log("--- Thoughts Summary ---");
}
// In Node.js, process.stdout.write(chunk.thoughtSummary()) could be used
// to avoid extra newlines.
console.log(chunk.thoughtSummary());
thoughts += chunk.thoughtSummary();
}
const text = chunk.text();
if (text) {
if (answer === "") {
console.log("--- Answer ---");
}
// In Node.js, process.stdout.write(text) could be used.
console.log(text);
answer += text;
}
}
Dart
在创建 GenerativeModel
实例时,在 GenerationConfig
中启用思路总结。
// ...
// Set the thinking configuration
// Optionally enable thought summaries in the generated response (default is false)
final thinkingConfig = ThinkingConfig(includeThoughts: true);
final generationConfig = GenerationConfig(
thinkingConfig: thinkingConfig
);
// Specify the config as part of creating the `GenerativeModel` instance
final model = FirebaseAI.googleAI().generativeModel(
model: 'GEMINI_MODEL_NAME',
generationConfig: generationConfig,
);
final responses = model.generateContentStream('solve x^2 + 4x + 4 = 0');
// Handle the streamed response that includes thought summaries
var thoughts = '';
var answer = '';
await for (final response in responses) {
if (response.thoughtSummary != null) {
if (thoughts.isEmpty) {
print('--- Thoughts Summary ---');
}
thoughts += response.thoughtSummary!;
}
if (response.text != null) {
if (answer.isEmpty) {
print('--- Answer ---');
}
answer += response.text!;
}
}
Unity
在创建 GenerativeModel
实例时,在 GenerationConfig
中启用思路总结。
// ...
// Set the thinking configuration
// Optionally enable thought summaries in the generated response (default is false)
var thinkingConfig = new ThinkingConfig(includeThoughts: true);
var generationConfig = new GenerationConfig(
thinkingConfig: thinkingConfig
);
// Specify the config as part of creating the `GenerativeModel` instance
var model = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI()).GetGenerativeModel(
modelName: "GEMINI_MODEL_NAME",
generationConfig: generationConfig
);
var stream = model.GenerateContentStreamAsync("solve x^2 + 4x + 4 = 0");
// Handle the streamed response that includes thought summaries
var thoughts = "";
var answer = "";
await foreach (var response in stream)
{
if (response.ThoughtSummary != null)
{
if (string.IsNullOrEmpty(thoughts))
{
Debug.Log("--- Thoughts Summary ---");
}
Debug.Log(response.ThoughtSummary);
thoughts += response.ThoughtSummary;
}
if (response.Text != null)
{
if (string.IsNullOrEmpty(answer))
{
Debug.Log("--- Answer ---");
}
Debug.Log(response.Text);
answer += response.Text;
}
}
了解思考签名
在多轮互动中使用思考时,模型无法访问之前轮次的思考上下文。不过,如果您使用函数调用,则可以利用思维签名在多个对话轮次中保持思维上下文。思维签名是模型内部思维过程的加密表示形式,在使用思考和函数调用时可用。具体来说,在以下情况下会生成想法签名:
- 已启用思考功能,并生成了想法。
- 请求包含函数声明。
如需利用思维签名,请像往常一样使用函数调用。
Firebase AI Logic SDK 可管理状态并自动处理意念签名,从而简化流程。在 Chat
会话中,SDK 会自动在后续的 sendMessage
或 sendMessageStream
调用之间传递任何生成的思维签名。
价格和思考 token 的计数方式
思考令牌与文本输出令牌使用相同的价格。如果您启用思维总结,则这些总结会被视为思维 token,并相应地定价。
您可以在 Firebase 控制台中启用 AI 监控,以监控已启用思考功能的请求的思考令牌数量。
您可以从回答的 usageMetadata
属性中的 thoughtsTokenCount
字段获取思考 token 总数:
Swift
// ...
let response = try await model.generateContent("Why is the sky blue?")
if let usageMetadata = response.usageMetadata {
print("Thoughts Token Count: \(usageMetadata.thoughtsTokenCount)")
}
Kotlin
// ...
val response = model.generateContent("Why is the sky blue?")
response.usageMetadata?.let { usageMetadata ->
println("Thoughts Token Count: ${usageMetadata.thoughtsTokenCount}")
}
Java
// ...
ListenableFuture<GenerateContentResponse> response =
model.generateContent("Why is the sky blue?");
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
@Override
public void onSuccess(GenerateContentResponse result) {
String usageMetadata = result.getUsageMetadata();
if (usageMetadata != null) {
System.out.println("Thoughts Token Count: " +
usageMetadata.getThoughtsTokenCount());
}
}
@Override
public void onFailure(Throwable t) {
t.printStackTrace();
}
}, executor);
Web
// ...
const response = await model.generateContent("Why is the sky blue?");
if (response?.usageMetadata?.thoughtsTokenCount != null) {
console.log(`Thoughts Token Count: ${response.usageMetadata.thoughtsTokenCount}`);
}
Dart
// ...
final response = await model.generateContent(
Content.text("Why is the sky blue?"),
]);
if (response?.usageMetadata case final usageMetadata?) {
print("Thoughts Token Count: ${usageMetadata.thoughtsTokenCount}");
}
Unity
// ...
var response = await model.GenerateContentAsync("Why is the sky blue?");
if (response.UsageMetadata != null)
{
UnityEngine.Debug.Log($"Thoughts Token Count: {response.UsageMetadata?.ThoughtsTokenCount}");
}
如需详细了解令牌,请参阅令牌计数指南。