คุณขอให้โมเดล Gemini วิเคราะห์ไฟล์วิดีโอที่คุณระบุได้ ทั้งแบบอินไลน์ (เข้ารหัส Base64) หรือผ่าน URL เมื่อใช้ Firebase AI Logic คุณจะส่งคำขอนี้จากแอปได้โดยตรง
ความสามารถนี้ช่วยให้คุณทำสิ่งต่างๆ ได้ เช่น
- ใส่คำบรรยายแทนเสียงและตอบคำถามเกี่ยวกับวิดีโอ
- วิเคราะห์ส่วนที่เฉพาะเจาะจงของวิดีโอโดยใช้การประทับเวลา
- ถอดเสียงเนื้อหาวิดีโอโดยประมวลผลทั้งแทร็กเสียงและเฟรมภาพ
- อธิบาย แบ่งกลุ่ม และดึงข้อมูลจากวิดีโอ รวมถึง แทร็กเสียงและเฟรมภาพ
ไปที่ตัวอย่างโค้ด ไปที่โค้ดสำหรับการตอบกลับแบบสตรีม
|
ดูคำแนะนำอื่นๆ สำหรับตัวเลือกเพิ่มเติมในการทำงานกับวิดีโอ สร้างเอาต์พุตที่มีโครงสร้าง แชทแบบหลายรอบ |
ก่อนเริ่มต้น
|
คลิกผู้ให้บริการ Gemini API เพื่อดูเนื้อหาและโค้ดเฉพาะของผู้ให้บริการ ในหน้านี้ |
หากยังไม่ได้ดำเนินการ ให้ทำตามคู่มือเริ่มต้นใช้งาน ซึ่งอธิบายวิธี
ตั้งค่าโปรเจ็กต์ Firebase, เชื่อมต่อแอปกับ Firebase, เพิ่ม SDK,
เริ่มต้นบริการแบ็กเอนด์สำหรับผู้ให้บริการ Gemini API ที่เลือก และ
สร้างอินสแตนซ์ GenerativeModel
สําหรับการทดสอบและทําซ้ำพรอมต์ เราขอแนะนําให้ใช้ Google AI Studio
สร้างข้อความจากไฟล์วิดีโอ (เข้ารหัส Base64)
|
ก่อนที่จะลองใช้ตัวอย่างนี้ ให้ทำตามส่วน
ก่อนที่จะเริ่มของคู่มือนี้
เพื่อตั้งค่าโปรเจ็กต์และแอป ในส่วนนั้น คุณจะคลิกปุ่มสำหรับ ผู้ให้บริการ Gemini API ที่เลือกเพื่อให้เห็นเนื้อหาเฉพาะของผู้ให้บริการ ในหน้านี้ด้วย |
คุณขอให้โมเดล Gemini สร้างข้อความได้โดยการป้อนข้อความและวิดีโอ ซึ่งจะระบุmimeTypeของไฟล์อินพุตแต่ละไฟล์และตัวไฟล์เอง ดูข้อกำหนดและคำแนะนำสำหรับไฟล์อินพุต
ในส่วนท้ายของหน้านี้
Swift
คุณสามารถเรียกใช้
generateContent()
เพื่อสร้างข้อความจากอินพุตหลายรูปแบบของไฟล์ข้อความและวิดีโอ
import FirebaseAI
// Initialize the Gemini Developer API backend service
let ai = FirebaseAI.firebaseAI(backend: .googleAI())
// Create a `GenerativeModel` instance with a model that supports your use case
let model = ai.generativeModel(modelName: "gemini-2.5-flash")
// Provide the video as `Data` with the appropriate MIME type.
let video = InlineDataPart(data: try Data(contentsOf: videoURL), mimeType: "video/mp4")
// Provide a text prompt to include with the video
let prompt = "What is in the video?"
// To generate text output, call generateContent with the text and video
let response = try await model.generateContent(video, prompt)
print(response.text ?? "No text in response.")
Kotlin
คุณสามารถเรียกใช้
generateContent()
เพื่อสร้างข้อความจากอินพุตหลายรูปแบบของไฟล์ข้อความและวิดีโอ
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
val model = Firebase.ai(backend = GenerativeBackend.googleAI())
.generativeModel("gemini-2.5-flash")
val contentResolver = applicationContext.contentResolver
contentResolver.openInputStream(videoUri).use { stream ->
stream?.let {
val bytes = stream.readBytes()
// Provide a prompt that includes the video specified above and text
val prompt = content {
inlineData(bytes, "video/mp4")
text("What is in the video?")
}
// To generate text output, call generateContent with the prompt
val response = model.generateContent(prompt)
Log.d(TAG, response.text ?: "")
}
}
Java
คุณสามารถเรียกใช้
generateContent()
เพื่อสร้างข้อความจากอินพุตหลายรูปแบบของไฟล์ข้อความและวิดีโอ
ListenableFuture
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI())
.generativeModel("gemini-2.5-flash");
// Use the GenerativeModelFutures Java compatibility layer which offers
// support for ListenableFuture and Publisher APIs
GenerativeModelFutures model = GenerativeModelFutures.from(ai);
ContentResolver resolver = getApplicationContext().getContentResolver();
try (InputStream stream = resolver.openInputStream(videoUri)) {
File videoFile = new File(new URI(videoUri.toString()));
int videoSize = (int) videoFile.length();
byte[] videoBytes = new byte[videoSize];
if (stream != null) {
stream.read(videoBytes, 0, videoBytes.length);
stream.close();
// Provide a prompt that includes the video specified above and text
Content prompt = new Content.Builder()
.addInlineData(videoBytes, "video/mp4")
.addText("What is in the video?")
.build();
// To generate text output, call generateContent with the prompt
ListenableFuture<GenerateContentResponse> response = model.generateContent(prompt);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
@Override
public void onSuccess(GenerateContentResponse result) {
String resultText = result.getText();
System.out.println(resultText);
}
@Override
public void onFailure(Throwable t) {
t.printStackTrace();
}
}, executor);
}
} catch (IOException e) {
e.printStackTrace();
} catch (URISyntaxException e) {
e.printStackTrace();
}
Web
คุณสามารถเรียกใช้
generateContent()
เพื่อสร้างข้อความจากอินพุตหลายรูปแบบของไฟล์ข้อความและวิดีโอ
import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend } from "firebase/ai";
// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
// ...
};
// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);
// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });
// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, { model: "gemini-2.5-flash" });
// Converts a File object to a Part object.
async function fileToGenerativePart(file) {
const base64EncodedDataPromise = new Promise((resolve) => {
const reader = new FileReader();
reader.onloadend = () => resolve(reader.result.split(',')[1]);
reader.readAsDataURL(file);
});
return {
inlineData: { data: await base64EncodedDataPromise, mimeType: file.type },
};
}
async function run() {
// Provide a text prompt to include with the video
const prompt = "What do you see?";
const fileInputEl = document.querySelector("input[type=file]");
const videoPart = await fileToGenerativePart(fileInputEl.files[0]);
// To generate text output, call generateContent with the text and video
const result = await model.generateContent([prompt, videoPart]);
const response = result.response;
const text = response.text();
console.log(text);
}
run();
Dart
คุณสามารถเรียกใช้
generateContent()
เพื่อสร้างข้อความจากอินพุตหลายรูปแบบของไฟล์ข้อความและวิดีโอ
import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';
// Initialize FirebaseApp
await Firebase.initializeApp(
options: DefaultFirebaseOptions.currentPlatform,
);
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
final model =
FirebaseAI.googleAI().generativeModel(model: 'gemini-2.5-flash');
// Provide a text prompt to include with the video
final prompt = TextPart("What's in the video?");
// Prepare video for input
final video = await File('video0.mp4').readAsBytes();
// Provide the video as `Data` with the appropriate mimetype
final videoPart = InlineDataPart('video/mp4', video);
// To generate text output, call generateContent with the text and images
final response = await model.generateContent([
Content.multi([prompt, ...videoPart])
]);
print(response.text);
Unity
คุณสามารถเรียกใช้
GenerateContentAsync()
เพื่อสร้างข้อความจากอินพุตหลายรูปแบบของไฟล์ข้อความและวิดีโอ
using Firebase;
using Firebase.AI;
// Initialize the Gemini Developer API backend service
var ai = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI());
// Create a `GenerativeModel` instance with a model that supports your use case
var model = ai.GetGenerativeModel(modelName: "gemini-2.5-flash");
// Provide the video as `data` with the appropriate MIME type.
var video = ModelContent.InlineData("video/mp4",
System.IO.File.ReadAllBytes(System.IO.Path.Combine(
UnityEngine.Application.streamingAssetsPath, "yourVideo.mp4")));
// Provide a text prompt to include with the video
var prompt = ModelContent.Text("What is in the video?");
// To generate text output, call GenerateContentAsync with the text and video
var response = await model.GenerateContentAsync(new [] { video, prompt });
UnityEngine.Debug.Log(response.Text ?? "No text in response.");
ดูวิธีเลือกโมเดล (ไม่บังคับ) ที่เหมาะสมกับกรณีการใช้งานและแอปของคุณ
สตรีมคำตอบ
|
ก่อนที่จะลองใช้ตัวอย่างนี้ ให้ทำตามส่วน
ก่อนที่จะเริ่มของคู่มือนี้
เพื่อตั้งค่าโปรเจ็กต์และแอป ในส่วนนั้น คุณจะคลิกปุ่มสำหรับ ผู้ให้บริการ Gemini API ที่เลือกเพื่อให้เห็นเนื้อหาเฉพาะของผู้ให้บริการ ในหน้านี้ด้วย |
คุณจะโต้ตอบได้เร็วขึ้นโดยไม่ต้องรอผลลัพธ์ทั้งหมดจากการสร้างโมเดล และใช้การสตรีมเพื่อจัดการผลลัพธ์บางส่วนแทน
หากต้องการสตรีมคำตอบ ให้เรียกใช้ generateContentStream
ข้อกำหนดและคำแนะนำสำหรับไฟล์วิดีโออินพุต
โปรดทราบว่าไฟล์ที่ระบุเป็นข้อมูลแบบอินไลน์จะได้รับการเข้ารหัสเป็น base64 ระหว่างการรับส่ง ซึ่งจะเพิ่มขนาดของคำขอ คุณจะได้รับข้อผิดพลาด HTTP 413 หากคำขอมีขนาดใหญ่เกินไป
ดูข้อมูลโดยละเอียดเกี่ยวกับสิ่งต่อไปนี้ได้ที่หน้า "ไฟล์อินพุตที่รองรับและข้อกำหนด"
- ตัวเลือกต่างๆ สำหรับการระบุไฟล์ในคำขอ (ทั้งในบรรทัดหรือใช้ URL หรือ URI ของไฟล์)
- ข้อกำหนดและแนวทางปฏิบัติแนะนำสำหรับไฟล์วิดีโอ
ประเภท MIME ของวิดีโอที่รองรับ
Gemini โมเดลหลายรูปแบบรองรับประเภท MIME ของวิดีโอต่อไปนี้
- FLV -
video/x-flv - MOV -
video/quicktime - MPEG -
video/mpeg - MPEGPS -
video/mpegps - MPG -
video/mpg - MP4 -
video/mp4 - WEBM -
video/webm - WMV -
video/wmv - 3GPP -
video/3gpp
จำนวนที่จำกัดต่อคำขอ
ไฟล์สูงสุดต่อคำขอ: ไฟล์วิดีโอ 10 ไฟล์
คุณทำอะไรได้อีกบ้าง
- ดูวิธีนับโทเค็น ก่อนส่งพรอมต์ยาวๆ ไปยังโมเดล
- ตั้งค่า Cloud Storage for Firebase เพื่อให้คุณรวมไฟล์ขนาดใหญ่ในคำขอแบบมัลติโมดัลและมี โซลูชันที่มีการจัดการมากขึ้นสำหรับการระบุไฟล์ในพรอมต์ ไฟล์อาจมีรูปภาพ, PDF, วิดีโอ และเสียง
-
เริ่มคิดถึงการเตรียมพร้อมสำหรับเวอร์ชันที่ใช้งานจริง (ดูรายการตรวจสอบการผลิต)
ซึ่งรวมถึง
- ตั้งค่า Firebase App Check เพื่อปกป้อง Gemini API จากการละเมิดโดยไคลเอ็นต์ที่ไม่ได้รับอนุญาต
- การผสานรวม Firebase Remote Config เพื่ออัปเดตค่าในแอป (เช่น ชื่อโมเดล) โดยไม่ต้องเผยแพร่แอปเวอร์ชันใหม่
ลองใช้ความสามารถอื่นๆ
- สร้างการสนทนาแบบหลายรอบ (แชท)
- สร้างข้อความจากพรอมต์ข้อความเท่านั้น
- สร้างเอาต์พุตที่มีโครงสร้าง (เช่น JSON) จากทั้งข้อความและพรอมต์แบบมัลติโมดัล
- สร้างรูปภาพจากพรอมต์ข้อความ (Gemini หรือ Imagen)
- ใช้เครื่องมือ (เช่น การเรียกใช้ฟังก์ชัน และการอ้างอิงจาก Google Search) เพื่อเชื่อมต่อโมเดล Gemini กับส่วนอื่นๆ ของแอปและระบบและข้อมูลภายนอก
ดูวิธีควบคุมการสร้างเนื้อหา
- ทำความเข้าใจการออกแบบพรอมต์ รวมถึง แนวทางปฏิบัติแนะนำ กลยุทธ์ และพรอมต์ตัวอย่าง
- กำหนดค่าพารามิเตอร์ของโมเดล เช่น อุณหภูมิและโทเค็นเอาต์พุตสูงสุด (สำหรับ Gemini) หรือสัดส่วนภาพ และการสร้างบุคคล (สำหรับ Imagen)
- ใช้การตั้งค่าความปลอดภัยเพื่อปรับ ความเป็นไปได้ที่จะได้รับคำตอบที่อาจถือว่าไม่เหมาะสม
ดูข้อมูลเพิ่มเติมเกี่ยวกับโมเดลที่รองรับ
ดูข้อมูลเกี่ยวกับ โมเดลที่พร้อมใช้งานสำหรับกรณีการใช้งานต่างๆ รวมถึง โควต้าและ ราคาแสดงความคิดเห็น เกี่ยวกับประสบการณ์การใช้งาน Firebase AI Logic