This page describes the capabilities of the Live API when you use it via Firebase AI Logic, including:
Supported input modalities, including:
Advanced capabilities, including mid-session updates:
Lists of not supported features, many of which are coming soon!
You can also customize your implementation by using various configuration options, like adding transcription or setting the response voice.
Input modalities
This section describes how to send various types of inputs to a Live API model. Native audio models always require audio input (along with optional additional modalities of input), and they always respond with audio output.
Stream audio input
|
Click your Gemini API provider to view provider-specific content and code on this page. |
The most common capability of the Live API is bidirectional audio streaming, meaning real-time streaming of both audio input and output.
The Live API supports the following audio formats:
- Input audio format: Raw 16 bit PCM audio at 16kHz little-endian
- Output audio format: Raw 16 bit PCM audio at 24kHz little-endian
To convey the sample rate of input audio, set the MIME type of each
audio-containing Blob to a value like audio/pcm;rate=16000.
Swift
To use the Live API, create a
LiveModel
instance and set the
response modality
to audio.
import FirebaseAILogic
// Initialize the Gemini Developer API backend service
// Create a `liveModel` instance with a model that supports the Live API
let liveModel = FirebaseAI.firebaseAI(backend: .googleAI()).liveModel(
modelName: "gemini-2.5-flash-native-audio-preview-09-2025",
// Configure the model to respond with audio
generationConfig: LiveGenerationConfig(
responseModalities: [.audio]
)
)
do {
let session = try await liveModel.connect()
// Load the audio file, or tap a microphone
guard let audioFile = NSDataAsset(name: "audio.pcm") else {
fatalError("Failed to load audio file")
}
// Provide the audio data
await session.sendAudioRealtime(audioFile.data)
var outputText = ""
for try await message in session.responses {
if case let .content(content) = message.payload {
content.modelTurn?.parts.forEach { part in
if let part = part as? InlineDataPart, part.mimeType.starts(with: "audio/pcm") {
// Handle 16bit pcm audio data at 24khz
playAudio(part.data)
}
}
// Optional: if you don't require to send more requests.
if content.isTurnComplete {
await session.close()
}
}
}
} catch {
fatalError(error.localizedDescription)
}
Kotlin
To use the Live API, create a
LiveModel
instance and set the
response modality
to AUDIO.
// Initialize the Gemini Developer API backend service
// Create a `liveModel` instance with a model that supports the Live API
val liveModel = Firebase.ai(backend = GenerativeBackend.googleAI()).liveModel(
modelName = "gemini-2.5-flash-native-audio-preview-09-2025",
// Configure the model to respond with audio
generationConfig = liveGenerationConfig {
responseModality = ResponseModality.AUDIO
}
)
val session = liveModel.connect()
// This is the recommended approach.
// However, you can create your own recorder and handle the stream.
session.startAudioConversation()
Java
To use the Live API, create a
LiveModel
instance and set the
response modality
to AUDIO.
ExecutorService executor = Executors.newFixedThreadPool(1);
// Initialize the Gemini Developer API backend service
// Create a `liveModel` instance with a model that supports the Live API
LiveGenerativeModel lm = FirebaseAI.getInstance(GenerativeBackend.googleAI()).liveModel(
"gemini-2.5-flash-native-audio-preview-09-2025",
// Configure the model to respond with audio
new LiveGenerationConfig.Builder()
.setResponseModality(ResponseModality.AUDIO)
.build()
);
LiveModelFutures liveModel = LiveModelFutures.from(lm);
ListenableFuture<LiveSession> sessionFuture = liveModel.connect();
Futures.addCallback(sessionFuture, new FutureCallback<LiveSession>() {
@Override
public void onSuccess(LiveSession ses) {
LiveSessionFutures session = LiveSessionFutures.from(ses);
session.startAudioConversation();
}
@Override
public void onFailure(Throwable t) {
// Handle exceptions
}
}, executor);
Web
To use the Live API, create a
LiveGenerativeModel
instance and set the
response modality
to AUDIO.
import { initializeApp } from "firebase/app";
import { getAI, getLiveGenerativeModel, GoogleAIBackend, ResponseModality } from "firebase/ai";
// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
// ...
};
// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);
// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });
// Create a `LiveGenerativeModel` instance with a model that supports the Live API
const liveModel = getLiveGenerativeModel(ai, {
model: "gemini-2.5-flash-native-audio-preview-09-2025",
// Configure the model to respond with audio
generationConfig: {
responseModalities: [ResponseModality.AUDIO],
},
});
const session = await liveModel.connect();
// Start the audio conversation
const audioConversationController = await startAudioConversation(session);
// ... Later, to stop the audio conversation
// await audioConversationController.stop()
Dart
To use the Live API, create a
LiveGenerativeModel
instance and set the
response modality
to audio.
import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';
import 'package:your_audio_recorder_package/your_audio_recorder_package.dart';
late LiveModelSession _session;
final _audioRecorder = YourAudioRecorder();
await Firebase.initializeApp(
options: DefaultFirebaseOptions.currentPlatform,
);
// Initialize the Gemini Developer API backend service
// Create a `liveGenerativeModel` instance with a model that supports the Live API
final liveModel = FirebaseAI.googleAI().liveGenerativeModel(
model: 'gemini-2.5-flash-native-audio-preview-09-2025',
// Configure the model to respond with audio
liveGenerationConfig: LiveGenerationConfig(
responseModalities: [ResponseModalities.audio],
),
);
_session = await liveModel.connect();
final audioRecordStream = _audioRecorder.startRecordingStream();
// Map the Uint8List stream to InlineDataPart stream
final mediaChunkStream = audioRecordStream.map((data) {
return InlineDataPart('audio/pcm', data);
});
await _session.startMediaStream(mediaChunkStream);
// In a separate thread, receive the audio response from the model
await for (final message in _session.receive()) {
// Process the received message
}
Unity
To use the Live API, create a
LiveModel
instance and set the
response modality
to Audio.
using Firebase;
using Firebase.AI;
async Task SendTextReceiveAudio() {
// Initialize the Gemini Developer API backend service
// Create a `LiveModel` instance with a model that supports the Live API
var liveModel = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI()).GetLiveModel(
modelName: "gemini-2.5-flash-native-audio-preview-09-2025",
// Configure the model to respond with audio
liveGenerationConfig: new LiveGenerationConfig(
responseModalities: new[] { ResponseModality.Audio })
);
LiveSession session = await liveModel.ConnectAsync();
// Start a coroutine to send audio from the Microphone
var recordingCoroutine = StartCoroutine(SendAudio(session));
// Start receiving the response
await ReceiveAudio(session);
}
IEnumerator SendAudio(LiveSession liveSession) {
string microphoneDeviceName = null;
int recordingFrequency = 16000;
int recordingBufferSeconds = 2;
var recordingClip = Microphone.Start(microphoneDeviceName, true,
recordingBufferSeconds, recordingFrequency);
int lastSamplePosition = 0;
while (true) {
if (!Microphone.IsRecording(microphoneDeviceName)) {
yield break;
}
int currentSamplePosition = Microphone.GetPosition(microphoneDeviceName);
if (currentSamplePosition != lastSamplePosition) {
// The Microphone uses a circular buffer, so we need to check if the
// current position wrapped around to the beginning, and handle it
// accordingly.
int sampleCount;
if (currentSamplePosition > lastSamplePosition) {
sampleCount = currentSamplePosition - lastSamplePosition;
} else {
sampleCount = recordingClip.samples - lastSamplePosition + currentSamplePosition;
}
if (sampleCount > 0) {
// Get the audio chunk
float[] samples = new float[sampleCount];
recordingClip.GetData(samples, lastSamplePosition);
// Send the data, discarding the resulting Task to avoid the warning
_ = liveSession.SendAudioAsync(samples);
lastSamplePosition = currentSamplePosition;
}
}
// Wait for a short delay before reading the next sample from the Microphone
const float MicrophoneReadDelay = 0.5f;
yield return new WaitForSeconds(MicrophoneReadDelay);
}
}
Queue audioBuffer = new();
async Task ReceiveAudio(LiveSession liveSession) {
int sampleRate = 24000;
int channelCount = 1;
// Create a looping AudioClip to fill with the received audio data
int bufferSamples = (int)(sampleRate * channelCount);
AudioClip clip = AudioClip.Create("StreamingPCM", bufferSamples, channelCount,
sampleRate, true, OnAudioRead);
// Attach the clip to an AudioSource and start playing it
AudioSource audioSource = GetComponent();
audioSource.clip = clip;
audioSource.loop = true;
audioSource.Play();
// Start receiving the response
await foreach (var message in liveSession.ReceiveAsync()) {
// Process the received message
foreach (float[] pcmData in message.AudioAsFloat) {
lock (audioBuffer) {
foreach (float sample in pcmData) {
audioBuffer.Enqueue(sample);
}
}
}
}
}
// This method is called by the AudioClip to load audio data.
private void OnAudioRead(float[] data) {
int samplesToProvide = data.Length;
int samplesProvided = 0;
lock(audioBuffer) {
while (samplesProvided < samplesToProvide && audioBuffer.Count > 0) {
data[samplesProvided] = audioBuffer.Dequeue();
samplesProvided++;
}
}
while (samplesProvided < samplesToProvide) {
data[samplesProvided] = 0.0f;
samplesProvided++;
}
}
Stream text + audio input
|
Click your Gemini API provider to view provider-specific content and code on this page. |
If needed, you can send text input along with the audio input and receive streamed audio output.
Swift
To use the Live API, create a
LiveModel
instance and set the
response modality
to audio.
import FirebaseAILogic
// Initialize the Gemini Developer API backend service
// Create a `liveModel` instance with a model that supports the Live API
let liveModel = FirebaseAI.firebaseAI(backend: .googleAI()).liveModel(
modelName: "gemini-2.5-flash-native-audio-preview-09-2025",
// Configure the model to respond with audio
generationConfig: LiveGenerationConfig(
responseModalities: [.audio]
)
)
do {
let session = try await liveModel.connect()
// Provide a text prompt
let text = "tell a short story"
await session.sendTextRealtime(text)
var outputText = ""
for try await message in session.responses {
if case let .content(content) = message.payload {
content.modelTurn?.parts.forEach { part in
if let part = part as? InlineDataPart, part.mimeType.starts(with: "audio/pcm") {
// Handle 16bit pcm audio data at 24khz
playAudio(part.data)
}
}
// Optional: if you don't require to send more requests.
if content.isTurnComplete {
await session.close()
}
}
}
} catch {
fatalError(error.localizedDescription)
}
Kotlin
To use the Live API, create a
LiveModel
instance and set the
response modality
to AUDIO.
// Initialize the Gemini Developer API backend service
// Create a `liveModel` instance with a model that supports the Live API
val liveModel = Firebase.ai(backend = GenerativeBackend.googleAI()).liveModel(
modelName = "gemini-2.5-flash-native-audio-preview-09-2025",
// Configure the model to respond with audio
generationConfig = liveGenerationConfig {
responseModality = ResponseModality.AUDIO
}
)
val session = liveModel.connect()
// Provide a text prompt
val text = "tell a short story"
session.send(text)
session.receive().collect {
if(it.turnComplete) {
// Optional: if you don't require to send more requests.
session.stopReceiving();
}
// Handle 16bit pcm audio data at 24khz
playAudio(it.data)
}
Java
To use the Live API, create a
LiveModel
instance and set the
response modality
to AUDIO.
ExecutorService executor = Executors.newFixedThreadPool(1);
// Initialize the Gemini Developer API backend service
// Create a `liveModel` instance with a model that supports the Live API
LiveGenerativeModel lm = FirebaseAI.getInstance(GenerativeBackend.googleAI()).liveModel(
"gemini-2.5-flash-native-audio-preview-09-2025",
// Configure the model to respond with text
new LiveGenerationConfig.Builder()
.setResponseModality(ResponseModality.AUDIO)
.build()
);
LiveModelFutures model = LiveModelFutures.from(lm);
ListenableFuture<LiveSession> sessionFuture = model.connect();
class LiveContentResponseSubscriber implements Subscriber<LiveContentResponse> {
@Override
public void onSubscribe(Subscription s) {
s.request(Long.MAX_VALUE); // Request an unlimited number of items
}
@Override
public void onNext(LiveContentResponse liveContentResponse) {
// Handle 16bit pcm audio data at 24khz
liveContentResponse.getData();
}
@Override
public void onError(Throwable t) {
System.err.println("Error: " + t.getMessage());
}
@Override
public void onComplete() {
System.out.println("Done receiving messages!");
}
}
Futures.addCallback(sessionFuture, new FutureCallback<LiveSession>() {
@Override
public void onSuccess(LiveSession ses) {
LiveSessionFutures session = LiveSessionFutures.from(ses);
// Provide a text prompt
String text = "tell me a short story?";
session.send(text);
Publisher<LiveContentResponse> publisher = session.receive();
publisher.subscribe(new LiveContentResponseSubscriber());
}
@Override
public void onFailure(Throwable t) {
// Handle exceptions
}
}, executor);
Web
To use the Live API, create a
LiveGenerativeModel
instance and set the
response modality
to AUDIO.
import { initializeApp } from "firebase/app";
import { getAI, getLiveGenerativeModel, GoogleAIBackend, ResponseModality } from "firebase/ai";
// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
// ...
};
// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);
// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });
// Create a `LiveGenerativeModel` instance with a model that supports the Live API
const liveModel = getLiveGenerativeModel(ai, {
model: "gemini-2.5-flash-native-audio-preview-09-2025",
// Configure the model to respond with audio
generationConfig: {
responseModalities: [ResponseModality.AUDIO],
},
});
const session = await liveModel.connect();
// Provide a text prompt
const prompt = "tell a short story";
session.send(prompt);
// Handle the model's audio output
const messages = session.receive();
for await (const message of messages) {
switch (message.type) {
case "serverContent":
if (message.turnComplete) {
// TODO(developer): Handle turn completion
} else if (message.interrupted) {
// TODO(developer): Handle the interruption
break;
} else if (message.modelTurn) {
const parts = message.modelTurn?.parts;
parts?.forEach((part) => {
if (part.inlineData) {
// TODO(developer): Play the audio chunk
}
});
}
break;
case "toolCall":
// Ignore
case "toolCallCancellation":
// Ignore
}
}
Dart
To use the Live API, create a
LiveGenerativeModel
instance and set the
response modality
to audio.
import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';
import 'dart:async';
import 'dart:typed_data';
late LiveModelSession _session;
Future<Stream<Uint8List>> textToAudio(String textPrompt) async {
WidgetsFlutterBinding.ensureInitialized();
await Firebase.initializeApp(
options: DefaultFirebaseOptions.currentPlatform,
);
// Initialize the Gemini Developer API backend service
// Create a `liveGenerativeModel` instance with a model that supports the Live API
final liveModel = FirebaseAI.googleAI().liveGenerativeModel(
model: 'gemini-2.5-flash-native-audio-preview-09-2025',
// Configure the model to respond with audio
liveGenerationConfig: LiveGenerationConfig(
responseModalities: [ResponseModalities.audio],
),
);
_session = await liveModel.connect();
final prompt = Content.text(textPrompt);
await _session.send(input: prompt);
return _session.receive().asyncMap((response) async {
if (response is LiveServerContent && response.modelTurn?.parts != null) {
for (final part in response.modelTurn!.parts) {
if (part is InlineDataPart) {
return part.bytes;
}
}
}
throw Exception('Audio data not found');
});
}
Future<void> main() async {
try {
final audioStream = await textToAudio('Convert this text to audio.');
await for (final audioData in audioStream) {
// Process the audio data (e.g., play it using an audio player package)
print('Received audio data: ${audioData.length} bytes');
// Example using flutter_sound (replace with your chosen package):
// await _flutterSoundPlayer.startPlayer(fromDataBuffer: audioData);
}
} catch (e) {
print('Error: $e');
}
}
Unity
To use the Live API, create a
LiveModel
instance and set the
response modality
to Audio.
using Firebase;
using Firebase.AI;
async Task SendTextReceiveAudio() {
// Initialize the Gemini Developer API backend service
// Create a `LiveModel` instance with a model that supports the Live API
var liveModel = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI()).GetLiveModel(
modelName: "gemini-2.5-flash-native-audio-preview-09-2025",
// Configure the model to respond with audio
liveGenerationConfig: new LiveGenerationConfig(
responseModalities: new[] { ResponseModality.Audio })
);
LiveSession session = await liveModel.ConnectAsync();
// Provide a text prompt
var prompt = ModelContent.Text("Convert this text to audio.");
await session.SendAsync(content: prompt, turnComplete: true);
// Start receiving the response
await ReceiveAudio(session);
}
Queue<float> audioBuffer = new();
async Task ReceiveAudio(LiveSession session) {
int sampleRate = 24000;
int channelCount = 1;
// Create a looping AudioClip to fill with the received audio data
int bufferSamples = (int)(sampleRate * channelCount);
AudioClip clip = AudioClip.Create("StreamingPCM", bufferSamples, channelCount,
sampleRate, true, OnAudioRead);
// Attach the clip to an AudioSource and start playing it
AudioSource audioSource = GetComponent<AudioSource>();
audioSource.clip = clip;
audioSource.loop = true;
audioSource.Play();
// Start receiving the response
await foreach (var message in session.ReceiveAsync()) {
// Process the received message
foreach (float[] pcmData in message.AudioAsFloat) {
lock (audioBuffer) {
foreach (float sample in pcmData) {
audioBuffer.Enqueue(sample);
}
}
}
}
}
// This method is called by the AudioClip to load audio data.
private void OnAudioRead(float[] data) {
int samplesToProvide = data.Length;
int samplesProvided = 0;
lock(audioBuffer) {
while (samplesProvided < samplesToProvide && audioBuffer.Count > 0) {
data[samplesProvided] = audioBuffer.Dequeue();
samplesProvided++;
}
}
while (samplesProvided < samplesToProvide) {
data[samplesProvided] = 0.0f;
samplesProvided++;
}
}
Note that you can also send text as incremental content updates during an active session.
Stream video + audio input
Providing input video content provides visual context for the input audio.
The Live API expects a sequence of discrete image frames and supports video frames input at 1 frame per second (FPS). For best results, use native 768x768 resolution at 1 FPS.
Note that this specification makes the Live API unsuitable for use cases that require analyzing fast-changing video, such as play-by-play in high-speed sports.
Streaming video + audio input is a more advanced implementation, so check out a sample app to learn how to implement this capability: Swift - coming soon! | Android - sample app | Web - coming soon! | Flutter - sample app | Unity - coming soon!
Advanced capabilities
The Live API models support the following advanced capabilities for mid-session updates:
Update system instructions (for Vertex AI Gemini API only)
Add incremental content updates
You can add incremental updates during an active session. Use this to send text input, establish session context, or restore session context.
For longer contexts, we recommend providing a single message summary to free up the context window for subsequent interactions.
For short contexts, you can send turn-by-turn interactions to represent the exact sequence of events, like the snippet below.
Swift
// Define initial turns (history/context).
let turns: [ModelContent] = [
ModelContent(role: "user", parts: [TextPart("What is the capital of France?")]),
ModelContent(role: "model", parts: [TextPart("Paris")]),
]
// Send history, keeping the conversational turn OPEN (false).
await session.sendContent(turns, turnComplete: false)
// Define the new user query.
let newTurn: [ModelContent] = [
ModelContent(role: "user", parts: [TextPart("What is the capital of Germany?")]),
]
// Send the final query, CLOSING the turn (true) to trigger the model response.
await session.sendContent(newTurn, turnComplete: true)
Kotlin
Not yet supported for Android apps - check back soon!
Java
Not yet supported for Android apps - check back soon!
Web
const turns = [{ text: "Hello from the user!" }];
await session.send(
turns,
false // turnComplete: false
);
console.log("Sent history. Waiting for next input...");
// Define the new user query.
const newTurn [{ text: "And what is the capital of Germany?" }];
// Send the final query, CLOSING the turn (true) to trigger the model response.
await session.send(
newTurn,
true // turnComplete: true
);
console.log("Sent final query. Model response expected now.");
Dart
// Define initial turns (history/context).
final List turns = [
Content(
"user",
[Part.text("What is the capital of France?")],
),
Content(
"model",
[Part.text("Paris")],
),
];
// Send history, keeping the conversational turn OPEN (false).
await session.send(
input: turns,
turnComplete: false,
);
// Define the new user query.
final List newTurn = [
Content(
"user",
[Part.text("What is the capital of Germany?")],
),
];
// Send the final query, CLOSING the turn (true) to trigger the model response.
await session.send(
input: newTurn,
turnComplete: true,
);
Unity
// Define initial turns (history/context).
List turns = new List {
new ModelContent("user", new ModelContent.TextPart("What is the capital of France?") ),
new ModelContent("model", new ModelContent.TextPart("Paris") ),
};
// Send history, keeping the conversational turn OPEN (false).
foreach (ModelContent turn in turns)
{
await session.SendAsync(
content: turn,
turnComplete: false
);
}
// Define the new user query.
ModelContent newTurn = ModelContent.Text("What is the capital of Germany?");
// Send the final query, CLOSING the turn (true) to trigger the model response.
await session.SendAsync(
content: newTurn,
turnComplete: true
);
Update system instructions mid-session
| Only available when using the Vertex AI Gemini API as your API provider. |
You can update the system instructions during an active session. Use this to adapt the model's responses, for example to change the response language or modify the tone.
To update the system instructions mid-session, you can send text content with
the system role. The updated system instructions will remain in effect for the
remainder of the session.
Swift
await session.sendContent(
[ModelContent(
role: "system",
parts: [TextPart("new system instruction")]
)],
turnComplete: false
)
Kotlin
Not yet supported for Android apps - check back soon!
Java
Not yet supported for Android apps - check back soon!
Web
Not yet supported for Web apps - check back soon!
Dart
try {
await _session.send(
input: Content(
'system',
[Part.text('new system instruction')],
),
turnComplete: false,
);
} catch (e) {
print('Failed to update system instructions: $e');
}
Unity
try
{
await session.SendAsync(
content: new ModelContent(
"system",
new ModelContent.TextPart("new system instruction")
),
turnComplete: false
);
}
catch (Exception e)
{
Debug.LogError($"Failed to update system instructions: {e.Message}");
}
Not supported features
Features not yet supported by Firebase AI Logic when using the Live API, but they're coming soon!
Handling interruptions
Session management, including resuming a session across multiple connections, extending the session length, or compressing the context window.
Disabling and configuring voice activity detection (VAD)
Setting input media resolution
Adding a thinking configuration
Enabling affective dialogue or proactive audio
Receiving
UsageMetadatain the response
Features not supported by Firebase AI Logic when using the Live API, and they're unplanned right now.
Server prompt templates
Hybrid or on-device inference
AI monitoring in the Firebase console
What else can you do?
Customize your implementation by using various configuration options, like adding transcription or setting the response voice.
Supercharge your implementation by giving the model access to tools, like function calling and grounding with Google Search. Official documentation for using tools with the Live API is coming soon!
Learn about limits and specifications, for using the Live API, like session length, rate limits, supported languages, etc.