Ce guide vous explique comment commencer à effectuer des appels à Vertex AI Gemini API directement à partir de votre application à l'aide du SDK Vertex AI in Firebase pour la plate-forme de votre choix.
Autres options pour utiliser Gemini API
Essayez éventuellement une version "Google AI" alternative de la Gemini API
. Obtenez un accès sans frais (dans la limite des quotas et le cas échéant) à l'aide des SDK client Google AI Studio et Google AI. Ces SDK ne doivent être utilisés que pour le prototypage dans les applications mobiles et Web.Une fois que vous avez compris le fonctionnement d'un Gemini API, passez à nos SDK Vertex AI in Firebase (cette documentation), qui offrent de nombreuses fonctionnalités supplémentaires importantes pour les applications mobiles et Web, comme la protection de l'API contre les utilisations abusives à l'aide de Firebase App Check et la prise en charge des fichiers multimédias volumineux dans les requêtes.
Appeler éventuellement le Vertex AI Gemini API côté serveur (comme avec Python, Node.js ou Go)
Utilisez les SDK Vertex AI côté serveur, Firebase Genkit ou Firebase Extensions pour le Gemini API.
Prérequis
Ce guide suppose que vous savez utiliser Android Studio pour développer des applications pour Android.
Assurez-vous que votre environnement de développement et votre application Android répondent aux exigences suivantes:
- Android Studio (dernière version)
- Votre application Android doit cibler le niveau d'API 21 ou supérieur.
(Facultatif) Découvrez l'application exemple.
Téléchargez l'exemple d'application
Vous pouvez tester rapidement le SDK, voir une implémentation complète de différents cas d'utilisation ou utiliser l'application exemple si vous ne disposez pas de votre propre application Android. Pour utiliser l'application exemple, vous devez l'associer à un projet Firebase.
Étape 1: Configurer un projet Firebase et associer votre application à Firebase
Si vous disposez déjà d'un projet Firebase et d'une application connectée à Firebase
Dans la console Firebase, accédez à la page Build with Gemini (Développer avec Gemini).
Cliquez sur la fiche Vertex AI in Firebase pour lancer un workflow qui vous aide à effectuer les tâches suivantes:
Mettre à jour votre projet pour utiliser le forfait Blaze avec paiement à l'usage.
Activez les API requises dans votre projet (API Vertex AI et API Vertex AI in Firebase).
Passez à l'étape suivante de ce guide pour ajouter le SDK à votre application.
Si vous ne disposez pas encore d'un projet Firebase et d'une application connectée à Firebase
Configurer un projet Firebase
Connectez-vous à la console Firebase.
Cliquez sur Créer un projet, puis utilisez l'une des options suivantes:
Option 1: créez un projet Firebase entièrement nouveau (et son projet Google Cloud sous-jacent automatiquement) en saisissant un nouveau nom de projet à la première étape du workflow "Create project" (Créer un projet).
Option 2: "Ajouter Firebase" à un projet Google Cloud existant en sélectionnant le nom de votre projet Google Cloud dans le menu déroulant de la première étape du workflow "Créer un projet".
Notez que lorsque vous y êtes invité, vous n'avez pas besoin de configurer Google Analytics pour utiliser les SDK Vertex AI in Firebase.
Dans la console Firebase, accédez à la page Build with Gemini (Développer avec Gemini).
Cliquez sur la fiche Vertex AI in Firebase pour lancer un workflow qui vous aide à effectuer les tâches suivantes:
Mettre à jour votre projet pour utiliser le forfait Blaze avec paiement à l'usage.
Activez les API requises dans votre projet (API Vertex AI et API Vertex AI in Firebase).
Associer votre application à Firebase
Pour connecter votre application à Firebase, poursuivez dans le workflow d'IA générative de la console. Cette étape comprend les tâches suivantes:
Enregistrer votre application auprès de votre projet Firebase
Ajoutez votre fichier de configuration Firebase (
) et le plug-in Gradlegoogle-services.json
à votre application.google-services
Dans les étapes suivantes de ce guide, vous allez ajouter le SDK Vertex AI in Firebase à votre application et effectuer l'initialisation requise pour utiliser le SDK et le Gemini API.
Étape 2: Ajouter le SDK
Une fois votre projet Firebase configuré et votre application connectée à Firebase (voir étape précédente), vous pouvez ajouter le SDK Vertex AI in Firebase à votre application.
Le SDK Vertex AI in Firebase pour Android (firebase-vertexai
) permet d'accéder à Vertex AI Gemini API.
Dans votre fichier Gradle de votre module (au niveau de l'application) (comme <project>/<app-module>/build.gradle.kts
), ajoutez la dépendance pour la bibliothèque Vertex AI in Firebase pour Android.
Nous vous recommandons d'utiliser Firebase Android BoM pour contrôler le contrôle des versions de la bibliothèque.
dependencies { // ... other androidx dependencies // Import the BoM for the Firebase platform implementation(platform("com.google.firebase:firebase-bom:33.9.0")) // Add the dependency for the Vertex AI in Firebase library // When using the BoM, you don't specify versions in Firebase library dependencies implementation("com.google.firebase:firebase-vertexai") }
Pour Java, vous devez ajouter deux bibliothèques supplémentaires.
dependencies { // ... other androidx dependencies // Import the BoM for the Firebase platform implementation(platform("com.google.firebase:firebase-bom:33.9.0")) // Add the dependency for the Vertex AI in Firebase library // When using the BoM, you don't specify versions in Firebase library dependencies implementation("com.google.firebase:firebase-vertexai") // Required for one-shot operations (to use `ListenableFuture` from Guava Android) implementation("com.google.guava:guava:31.0.1-android") // Required for streaming operations (to use `Publisher` from Reactive Streams) implementation("org.reactivestreams:reactive-streams:1.0.4") }
En utilisant Firebase Android BoM, votre application utilisera toujours des versions compatibles des bibliothèques Firebase Android.
(Alternative) Ajoutez des dépendances de bibliothèque Firebase sans utiliser BoM.
Si vous choisissez de ne pas utiliser Firebase BoM, vous devez spécifier chaque version de la bibliothèque Firebase dans sa ligne de dépendance.
Notez que si vous utilisez plusieurs bibliothèques Firebase dans votre application, nous vous recommandons vivement d'utiliser BoM pour gérer les versions de la bibliothèque, ce qui garantit que toutes les versions sont compatibles.
dependencies { // Add the dependency for the Vertex AI in Firebase library // When NOT using the BoM, you must specify versions in Firebase library dependencies implementation("com.google.firebase:firebase-vertexai:16.1.0") }
Étape 3: Initialisez le service Vertex AI et le modèle génératif
Avant de pouvoir effectuer des appels d'API, vous devez initialiser le service Vertex AI et le modèle génératif.
// Initialize the Vertex AI service and the generative model
// Specify a model that supports your use case
val generativeModel = Firebase.vertexAI.generativeModel("gemini-2.0-flash")
Publisher
de la bibliothèque Reactive Streams.
// Initialize the Vertex AI service and the generative model
// Specify a model that supports your use case
GenerativeModel gm = FirebaseVertexAI.getInstance()
.generativeModel("gemini-2.0-flash");
// Use the GenerativeModelFutures Java compatibility layer which offers
// support for ListenableFuture and Publisher APIs
GenerativeModelFutures model = GenerativeModelFutures.from(gm);
Une fois que vous avez terminé le guide de démarrage, découvrez comment choisir un modèle Gemini et (facultatif) une position adaptée à votre cas d'utilisation et à votre application.
Étape 4: Appeler Vertex AI Gemini API
Maintenant que vous avez connecté votre application à Firebase, ajouté le SDK et initialisé le service Vertex AI et le modèle génératif, vous êtes prêt à appeler Vertex AI Gemini API.
Vous pouvez utiliser generateContent()
pour générer du texte à partir d'une requête d'invite textuelle uniquement:
// Initialize the Vertex AI service and the generative model
// Specify a model that supports your use case
val generativeModel = Firebase.vertexAI.generativeModel("gemini-2.0-flash")
// Provide a prompt that contains text
val prompt = "Write a story about a magic backpack."
// To generate text output, call generateContent with the text input
val response = generativeModel.generateContent(prompt)
print(response.text)
ListenableFuture
.
// Initialize the Vertex AI service and the generative model
// Specify a model that supports your use case
GenerativeModel gm = FirebaseVertexAI.getInstance()
.generativeModel("gemini-2.0-flash");
GenerativeModelFutures model = GenerativeModelFutures.from(gm);
// Provide a prompt that contains text
Content prompt = new Content.Builder()
.addText("Write a story about a magic backpack.")
.build();
// To generate text output, call generateContent with the text input
ListenableFuture<GenerateContentResponse> response = model.generateContent(prompt);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
@Override
public void onSuccess(GenerateContentResponse result) {
String resultText = result.getText();
System.out.println(resultText);
}
@Override
public void onFailure(Throwable t) {
t.printStackTrace();
}
}, executor);
Qu'est-ce que tu sais faire d'autre ?
En savoir plus sur les modèles Gemini
Découvrez les modèles disponibles pour différents cas d'utilisation, ainsi que leurs quotas et tarifs.
Essayer d'autres fonctionnalités de Gemini API
- Découvrez comment générer du texte à partir de requêtes textuelles uniquement, y compris comment diffuser la réponse.
- Générer du texte à partir de requêtes multimodales (y compris du texte, des images, des PDF, des vidéos et de l'audio)
- Créez des conversations multitours (chat).
- Générez une sortie structurée (comme JSON) à partir d'invites textuelles et multimodales.
- Utilisez l'appel de fonction pour connecter les modèles génératifs à des systèmes et des informations externes.
Découvrez comment contrôler la génération de contenu.
- Comprendre la conception des requêtes, y compris les bonnes pratiques, les stratégies et les exemples de requêtes.
- Configurez les paramètres du modèle, comme la température et le nombre maximal de jetons de sortie.
- Utilisez les paramètres de sécurité pour ajuster la probabilité d'obtenir des réponses pouvant être considérées comme nuisibles.
Envoyer des commentaires sur votre expérience avec Vertex AI in Firebase