Gdy wywołujesz Gemini API z aplikacji za pomocą pakietu SDK Vertex AI in Firebase, możesz poprosić model Gemini o wygenerowanie tekstu na podstawie danych wejściowych multimodalnych. Prompty multimodalne mogą zawierać wiele modalności (czyli typów danych wejściowych), takich jak tekst, obrazy, pliki PDF, pliki tekstowe, filmy i dźwięk.
W każdym żądaniu multimodalnym musisz zawsze podać te informacje:
Plik
mimeType
. Dowiedz się więcej o obsługiwanych typach MIME poszczególnych plików wejściowych.Plik. Plik możesz przesłać jako dane wstawione (jak na tej stronie) lub podać jego adres URL lub identyfikator URI.
Do testowania i ulepszania promptów multimodalnych zalecamy używanie Vertex AI Studio.
Zanim zaczniesz
Jeśli jeszcze tego nie zrobisz, zapoznaj się z przewodnikiem wprowadzającym do pakietów SDK Vertex AI in Firebase. Najpierw wykonaj te czynności:
Skonfiguruj nowy lub istniejący projekt Firebase, w tym użyj abonamentu Blaze i włącz wymagane interfejsy API.
Połącz aplikację z Firebase, w tym zarejestruj ją i dodaj do niej konfigurację Firebase.
Dodaj pakiet SDK i zainicjuj usługę Vertex AI oraz model generatywny w swojej aplikacji.
Po połączeniu aplikacji z Firebase, dodaniu pakietu SDK i inicjalizacji usługi Vertex AI oraz modelu generatywnego możesz wywołać funkcję Gemini API.
Generowanie tekstu na podstawie tekstu i jednego obrazu Generowanie tekstu na podstawie tekstu i wielu obrazów Generowanie tekstu na podstawie tekstu i filmu
Przykładowe pliki multimedialne
Jeśli nie masz jeszcze plików multimedialnych, możesz użyć tych dostępnych publicznie. Ponieważ te pliki są przechowywane w workach, które nie znajdują się w Twoim projekcie Firebase, musisz użyć formatu https://storage.googleapis.com/BUCKET_NAME/PATH/TO/FILE
w adresie URL.
Obraz:
https://storage.googleapis.com/cloud-samples-data/generative-ai/image/scones.jpg
Typ MIME:image/jpeg
. Wyświetl lub pobierz ten obraz.PDF:
https://storage.googleapis.com/cloud-samples-data/generative-ai/pdf/2403.05530.pdf
z typem MIMEapplication/pdf
. Wyświetl lub pobierz plik PDF.Wideo:
https://storage.googleapis.com/cloud-samples-data/video/animals.mp4
z typem MIMEvideo/mp4
. Obejrzyj lub pobierz ten filmDźwięk:
https://storage.googleapis.com/cloud-samples-data/generative-ai/audio/pixel.mp3
z typem MIMEaudio/mp3
. Słuchaj lub pobierz ten plik audio.
Generowanie tekstu na podstawie tekstu i jednego obrazu
Zanim spróbujesz użyć tego przykładu, zapoznaj się z sekcją Zanim zaczniesz tego przewodnika.
Możesz wywołać Gemini API za pomocą promptów multimodalnych, które zawierają zarówno tekst, jak i pojedynczy plik (np. obraz, jak w tym przykładzie). W takich przypadkach musisz użyć modelu, który obsługuje media w promptach (np. Gemini 2.0 Flash).
Zapoznaj się z wymaganiami i zaleceniami dotyczącymi plików wejściowych.
Wybierz, czy chcesz wyświetlić odpowiedź w czasie (generateContentStream
), czy poczekać na odpowiedź, aż zostanie wygenerowany cały wynik (generateContent
).
Streaming
Możesz uzyskać szybsze interakcje, nie czekając na pełny wynik wygenerowany przez model, a zamiast tego używać strumieniowego przesyłania wyników częściowych.
Bez przesyłania strumieniowego
Możesz też poczekać na cały wynik zamiast strumieniowego przesyłania. Wynik zostanie zwrócony dopiero po zakończeniu całego procesu generowania.
Dowiedz się, jak wybrać model Gemini i opcjonalnie lokalizację odpowiednią do Twojego przypadku użycia i aplikacji.
Generowanie tekstu na podstawie tekstu i wielu obrazów
Zanim spróbujesz użyć tego przykładu, zapoznaj się z sekcją Zanim zaczniesz tego przewodnika.
Możesz wywołać Gemini API za pomocą promptów multimodalnych, które zawierają zarówno tekst, jak i wiele plików (np. obrazów, jak w tym przykładzie). W takich przypadkach musisz użyć modelu, który obsługuje media w promptach (np. Gemini 2.0 Flash).
Zapoznaj się z wymaganiami i zaleceniami dotyczącymi plików wejściowych.
Wybierz, czy chcesz wyświetlić odpowiedź w czasie (generateContentStream
), czy poczekać na odpowiedź, aż zostanie wygenerowany cały wynik (generateContent
).
Streaming
Możesz uzyskać szybsze interakcje, nie czekając na pełny wynik wygenerowany przez model, a zamiast tego używać strumieniowego przesyłania wyników częściowych.
Bez przesyłania strumieniowego
Możesz też poczekać na cały wynik zamiast przesyłania strumieniowego. Wynik zostanie zwrócony dopiero po zakończeniu całego procesu generowania.
Dowiedz się, jak wybrać model Gemini i opcjonalnie lokalizację odpowiednią do Twojego przypadku użycia i aplikacji.
Generowanie tekstu na podstawie tekstu i filmu
Zanim spróbujesz użyć tego przykładu, zapoznaj się z sekcją Zanim zaczniesz tego przewodnika.
Możesz wywołać Gemini API za pomocą promptów multimodalnych, które zawierają zarówno tekst, jak i pliki wideo (jak w tym przykładzie). W przypadku takich połączeń musisz użyć modelu, który obsługuje media w promptach (np. Gemini 2.0 Flash).
Zapoznaj się z wymaganiami i zaleceniami dotyczącymi plików wejściowych.
Wybierz, czy chcesz wyświetlić odpowiedź w czasie (generateContentStream
), czy poczekać na odpowiedź, aż zostanie wygenerowany cały wynik (generateContent
).
Streaming
Możesz uzyskać szybsze interakcje, nie czekając na pełny wynik wygenerowany przez model, a zamiast tego używać strumieniowego przesyłania wyników częściowych.
Bez przesyłania strumieniowego
Możesz też poczekać na cały wynik zamiast strumieniowego przesyłania. Wynik zostanie zwrócony dopiero po zakończeniu całego procesu generowania.
Dowiedz się, jak wybrać model Gemini i opcjonalnie lokalizację odpowiednią do Twojego przypadku użycia i aplikacji.
Wymagania i zalecenia dotyczące plików wejściowych
Aby dowiedzieć się więcej o obsługiwanych plikach wejściowych i wymaganiach dotyczących pliku Vertex AI Gemini API, zapoznaj się z tymi informacjami:
- Różne opcje przesyłania pliku w żądaniu
- Obsługiwane typy plików
- Obsługiwane typy MIME i sposób ich określania
- Wymagania i sprawdzone metody dotyczące plików i zapytań multimodalnych
Co jeszcze możesz zrobić?
- Dowiedz się, jak policzyć tokeny przed wysłaniem długich promptów do modelu.
- Skonfiguruj Cloud Storage for Firebase, aby móc dołączać duże pliki do żądań multimodalnych i mieć lepiej zarządzane rozwiązanie do dostarczania plików w promptach. Mogą to być obrazy, pliki PDF, filmy i pliki audio.
- Zacznij myśleć o przygotowaniu usługi do wdrożenia, w tym o skonfigurowaniu Firebase App Check, aby chronić usługę Gemini API przed nadużyciami przez nieautoryzowanych klientów.
Wypróbuj inne możliwości Gemini API
- tworzyć rozmowy wieloetapowe (czat);
- generować tekst na podstawie promptów tekstowych;
- generować dane wyjściowe w uporządkowanym formacie (np. JSON) na podstawie zarówno promptów tekstowych, jak i promptów multimodalnych;
- Aby połączyć modele generatywne z zewnętrznymi systemami i informacjami, użyj wywołania funkcji.
Dowiedz się, jak kontrolować generowanie treści
- Poznaj projektowanie promptów, w tym sprawdzone metody, strategie i przykładowe prompty.
- Skonfiguruj parametry modelu, takie jak temperatura i maksymalna liczba tokenów wyjściowych.
- Używaj ustawień bezpieczeństwa, aby dostosować prawdopodobieństwo otrzymywania odpowiedzi, które mogą być uważane za szkodliwe.
Więcej informacji o modelach Gemini
Dowiedz się więcej o modelach dostępnych w różnych przypadkach użycia oraz ich limitach i cenach.Prześlij opinię na temat korzystania z usługi Vertex AI in Firebase