فایل های ویدئویی را با استفاده از API جمینی تجزیه و تحلیل کنید

شما می‌توانید از یک مدل Gemini بخواهید فایل‌های ویدیویی که شما به صورت درون‌خطی (با کدگذاری base64) یا از طریق URL ارائه می‌دهید را تجزیه و تحلیل کند. وقتی از Firebase AI Logic استفاده می‌کنید، می‌توانید این درخواست را مستقیماً از برنامه خود انجام دهید.

با این قابلیت، می‌توانید کارهایی مانند موارد زیر را انجام دهید:

  • زیرنویس بگذارید و به سوالات مربوط به ویدیوها پاسخ دهید
  • بخش‌های خاصی از یک ویدیو را با استفاده از مهرهای زمانی تجزیه و تحلیل کنید
  • با پردازش همزمان آهنگ صوتی و فریم‌های تصویری، محتوای ویدیو را رونویسی کنید
  • توصیف، قطعه‌بندی و استخراج اطلاعات از ویدیوها، شامل آهنگ صوتی و فریم‌های بصری

پرش به نمونه‌های کد پرش به کد برای پاسخ‌های استریم‌شده


برای گزینه‌های بیشتر برای کار با ویدیو، به راهنماهای دیگر مراجعه کنید.
تولید خروجی ساختاریافته چت چند نوبتی

قبل از اینکه شروع کنی

برای مشاهده محتوا و کد مخصوص ارائه‌دهنده در این صفحه، روی ارائه‌دهنده API Gemini خود کلیک کنید.

اگر هنوز این کار را نکرده‌اید، راهنمای شروع به کار را تکمیل کنید، که نحوه راه‌اندازی پروژه Firebase، اتصال برنامه به Firebase، افزودن SDK، راه‌اندازی سرویس backend برای ارائه‌دهنده API انتخابی Gemini و ایجاد یک نمونه GenerativeModel را شرح می‌دهد.

برای آزمایش و تکرار روی درخواست‌هایتان، توصیه می‌کنیم از Google AI Studio استفاده کنید.

تولید متن از فایل‌های ویدیویی (با کدگذاری base64)

قبل از امتحان کردن این نمونه، بخش «قبل از شروع» این راهنما را برای راه‌اندازی پروژه و برنامه خود تکمیل کنید.
در آن بخش، شما همچنین می‌توانید روی دکمه‌ای برای ارائه‌دهنده‌ی API Gemini انتخابی خود کلیک کنید تا محتوای خاص ارائه‌دهنده را در این صفحه مشاهده کنید .

شما می‌توانید از یک مدل Gemini بخواهید با ارائه متن و ویدیو، متن تولید کند - و mimeType هر فایل ورودی و خود فایل را ارائه دهد. الزامات و توصیه‌هایی برای فایل‌های ورودی را بعداً در این صفحه بیابید.

توجه داشته باشید که این مثال ارائه فایل به صورت درون‌خطی را نشان می‌دهد، اما SDKها از ارائه URL یوتیوب نیز پشتیبانی می‌کنند.

سویفت

شما می‌توانید generateContent() برای تولید متن از ورودی چندوجهی فایل‌های متنی و ویدیویی فراخوانی کنید.


import FirebaseAI

// Initialize the Gemini Developer API backend service
let ai = FirebaseAI.firebaseAI(backend: .googleAI())

// Create a `GenerativeModel` instance with a model that supports your use case
let model = ai.generativeModel(modelName: "gemini-2.5-flash")


// Provide the video as `Data` with the appropriate MIME type.
let video = InlineDataPart(data: try Data(contentsOf: videoURL), mimeType: "video/mp4")

// Provide a text prompt to include with the video
let prompt = "What is in the video?"

// To generate text output, call generateContent with the text and video
let response = try await model.generateContent(video, prompt)
print(response.text ?? "No text in response.")

Kotlin

شما می‌توانید generateContent() برای تولید متن از ورودی چندوجهی فایل‌های متنی و ویدیویی فراخوانی کنید.

برای کاتلین، متدهای موجود در این SDK توابع suspend هستند و باید از یک scope کوروتین فراخوانی شوند.

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
val model = Firebase.ai(backend = GenerativeBackend.googleAI())
                        .generativeModel("gemini-2.5-flash")


val contentResolver = applicationContext.contentResolver
contentResolver.openInputStream(videoUri).use { stream ->
  stream?.let {
    val bytes = stream.readBytes()

    // Provide a prompt that includes the video specified above and text
    val prompt = content {
        inlineData(bytes, "video/mp4")
        text("What is in the video?")
    }

    // To generate text output, call generateContent with the prompt
    val response = model.generateContent(prompt)
    Log.d(TAG, response.text ?: "")
  }
}

Java

شما می‌توانید generateContent() برای تولید متن از ورودی چندوجهی فایل‌های متنی و ویدیویی فراخوانی کنید.

برای جاوا، متدهای موجود در این SDK یک ListenableFuture برمی‌گردانند.

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI())
        .generativeModel("gemini-2.5-flash");

// Use the GenerativeModelFutures Java compatibility layer which offers
// support for ListenableFuture and Publisher APIs
GenerativeModelFutures model = GenerativeModelFutures.from(ai);


ContentResolver resolver = getApplicationContext().getContentResolver();
try (InputStream stream = resolver.openInputStream(videoUri)) {
    File videoFile = new File(new URI(videoUri.toString()));
    int videoSize = (int) videoFile.length();
    byte[] videoBytes = new byte[videoSize];
    if (stream != null) {
        stream.read(videoBytes, 0, videoBytes.length);
        stream.close();

        // Provide a prompt that includes the video specified above and text
        Content prompt = new Content.Builder()
                .addInlineData(videoBytes, "video/mp4")
                .addText("What is in the video?")
                .build();

        // To generate text output, call generateContent with the prompt
        ListenableFuture<GenerateContentResponse> response = model.generateContent(prompt);
        Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
            @Override
            public void onSuccess(GenerateContentResponse result) {
                String resultText = result.getText();
                System.out.println(resultText);
            }

            @Override
            public void onFailure(Throwable t) {
                t.printStackTrace();
            }
        }, executor);
    }
} catch (IOException e) {
    e.printStackTrace();
} catch (URISyntaxException e) {
    e.printStackTrace();
}

Web

شما می‌توانید generateContent() برای تولید متن از ورودی چندوجهی فایل‌های متنی و ویدیویی فراخوانی کنید.


import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend } from "firebase/ai";

// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
  // ...
};

// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);

// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });

// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, { model: "gemini-2.5-flash" });


// Converts a File object to a Part object.
async function fileToGenerativePart(file) {
  const base64EncodedDataPromise = new Promise((resolve) => {
    const reader = new FileReader();
    reader.onloadend = () => resolve(reader.result.split(',')[1]);
    reader.readAsDataURL(file);
  });
  return {
    inlineData: { data: await base64EncodedDataPromise, mimeType: file.type },
  };
}

async function run() {
  // Provide a text prompt to include with the video
  const prompt = "What do you see?";

  const fileInputEl = document.querySelector("input[type=file]");
  const videoPart = await fileToGenerativePart(fileInputEl.files[0]);

  // To generate text output, call generateContent with the text and video
  const result = await model.generateContent([prompt, videoPart]);

  const response = result.response;
  const text = response.text();
  console.log(text);
}

run();

Dart

شما می‌توانید generateContent() برای تولید متن از ورودی چندوجهی فایل‌های متنی و ویدیویی فراخوانی کنید.


import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';

// Initialize FirebaseApp
await Firebase.initializeApp(
  options: DefaultFirebaseOptions.currentPlatform,
);

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
final model =
      FirebaseAI.googleAI().generativeModel(model: 'gemini-2.5-flash');


// Provide a text prompt to include with the video
final prompt = TextPart("What's in the video?");

// Prepare video for input
final video = await File('video0.mp4').readAsBytes();

// Provide the video as `Data` with the appropriate mimetype
final videoPart = InlineDataPart('video/mp4', video);

// To generate text output, call generateContent with the text and images
final response = await model.generateContent([
  Content.multi([prompt, ...videoPart])
]);
print(response.text);

وحدت

شما می‌توانید تابع GenerateContentAsync() را برای تولید متن از ورودی چندوجهی فایل‌های متنی و ویدیویی فراخوانی کنید.


using Firebase;
using Firebase.AI;

// Initialize the Gemini Developer API backend service
var ai = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI());

// Create a `GenerativeModel` instance with a model that supports your use case
var model = ai.GetGenerativeModel(modelName: "gemini-2.5-flash");


// Provide the video as `data` with the appropriate MIME type.
var video = ModelContent.InlineData("video/mp4",
      System.IO.File.ReadAllBytes(System.IO.Path.Combine(
          UnityEngine.Application.streamingAssetsPath, "yourVideo.mp4")));

// Provide a text prompt to include with the video
var prompt = ModelContent.Text("What is in the video?");

// To generate text output, call GenerateContentAsync with the text and video
var response = await model.GenerateContentAsync(new [] { video, prompt });
UnityEngine.Debug.Log(response.Text ?? "No text in response.");

یاد بگیرید که چگونه یک مدل را انتخاب کنیدمناسب برای مورد استفاده و برنامه شما.

پاسخ را پخش کنید

قبل از امتحان کردن این نمونه، بخش «قبل از شروع» این راهنما را برای راه‌اندازی پروژه و برنامه خود تکمیل کنید.
در آن بخش، شما همچنین می‌توانید روی دکمه‌ای برای ارائه‌دهنده‌ی API Gemini انتخابی خود کلیک کنید تا محتوای خاص ارائه‌دهنده را در این صفحه مشاهده کنید .

شما می‌توانید با منتظر نماندن برای کل نتیجه از تولید مدل، و در عوض استفاده از استریمینگ برای مدیریت نتایج جزئی، به تعاملات سریع‌تری دست یابید. برای استریمینگ پاسخ، generateContentStream فراخوانی کنید.



الزامات و توصیه‌هایی برای فایل‌های ویدیویی ورودی

توجه داشته باشید که فایلی که به عنوان داده درون‌خطی ارائه می‌شود، در حین انتقال به base64 کدگذاری می‌شود که باعث افزایش اندازه درخواست می‌شود. اگر درخواست خیلی بزرگ باشد، خطای HTTP 413 دریافت خواهید کرد.

برای کسب اطلاعات دقیق در مورد موارد زیر، به صفحه «فایل‌های ورودی پشتیبانی‌شده و الزامات» مراجعه کنید:

انواع MIME ویدیویی پشتیبانی شده

مدل‌های چندوجهی Gemini از انواع MIME ویدیویی زیر پشتیبانی می‌کنند:

  • FLV - video/x-flv
  • MOV - video/quicktime
  • MPEG - video/mpeg
  • MPEGPS - video/mpegps
  • MPG - video/mpg
  • MP4 - video/mp4
  • وب‌ام - video/webm
  • WMV - video/wmv
  • 3GPP - video/3gpp

محدودیت‌ها به ازای هر درخواست

حداکثر تعداد فایل در هر درخواست: ۱۰ فایل ویدیویی



چه کار دیگری می‌توانید انجام دهید؟

  • یاد بگیرید که چگونه قبل از ارسال دستورات طولانی به مدل، توکن‌ها را بشمارید .
  • Cloud Storage for Firebase تنظیم کنید تا بتوانید فایل‌های بزرگ را در درخواست‌های چندوجهی خود بگنجانید و یک راه‌حل مدیریت‌شده‌تر برای ارائه فایل‌ها در اعلان‌ها داشته باشید. فایل‌ها می‌توانند شامل تصاویر، فایل‌های PDF، ویدیو و صدا باشند.
  • شروع به فکر کردن در مورد آماده‌سازی برای تولید کنید (به چک لیست تولید مراجعه کنید)، از جمله:

قابلیت‌های دیگر را امتحان کنید

آموزش کنترل تولید محتوا

شما همچنین می‌توانید با استفاده از دستورات و پیکربندی‌های مدل، آزمایش کنید و حتی یک قطعه کد تولید شده با استفاده از Google AI Studio دریافت کنید.

درباره مدل‌های پشتیبانی‌شده بیشتر بدانید

درباره مدل‌های موجود برای موارد استفاده مختلف و سهمیه‌ها و قیمت‌گذاری آنها اطلاعات کسب کنید.


درباره تجربه خود با Firebase AI Logic بازخورد دهید