Możliwości interfejsu Live API


Na tej stronie opisujemy możliwości interfejsu Live API, gdy używasz go za pomocą Firebase AI Logic, w tym:

Możesz też dostosować implementację, korzystając z różnych opcji konfiguracji, np. dodając transkrypcję lub ustawiając głos odpowiedzi.



Rodzaje danych wejściowych

W tej sekcji opisujemy, jak wysyłać do modelu Live API różne typy danych wejściowych. Modele audio natywne zawsze wymagają danych wejściowych w postaci dźwięku (a także opcjonalnych dodatkowych danych wejściowych w postaci tekstu lub wideo) i zawsze generują dane wyjściowe w postaci dźwięku.

Przesyłanie strumieniowe dźwięku wejściowego

Kliknij Gemini API dostawcę, aby wyświetlić na tej stronie treści i kod specyficzne dla tego dostawcy.

Najczęstszą funkcją Live API jest dwukierunkowe przesyłanie strumieniowe dźwięku, czyli przesyłanie strumieniowe w czasie rzeczywistym zarówno danych wejściowych, jak i wyjściowych audio.

Live API obsługuje te formaty audio:

  • Format dźwięku wejściowego: surowy 16-bitowy dźwięk PCM o częstotliwości próbkowania 16 kHz w formacie little-endian
  • Format wyjściowy dźwięku: surowy 16-bitowy dźwięk PCM o częstotliwości 24 kHz w formacie little-endian

  • Obsługiwane typy MIME: audio/x-aac, audio/flac, audio/mp3, audio/m4a, audio/mpeg, audio/mpga, audio/mp4, audio/ogg, audio/pcm, audio/wav, audio/webm

Aby przekazać częstotliwość próbkowania dźwięku wejściowego, ustaw typ MIME każdego obiektu Blob zawierającego dźwięk na wartość taką jak audio/pcm;rate=16000.

Swift

Aby użyć Live API, utwórz instancję LiveModel i ustaw modalność odpowiedzi na audio.


import FirebaseAILogic

// Initialize the Gemini Developer API backend service
// Create a `liveModel` instance with a model that supports the Live API
let liveModel = FirebaseAI.firebaseAI(backend: .googleAI()).liveModel(
  modelName: "gemini-2.5-flash-native-audio-preview-12-2025",
  // Configure the model to respond with audio
  generationConfig: LiveGenerationConfig(
    responseModalities: [.audio]
  )
)

do {
  let session = try await liveModel.connect()

  // Load the audio file, or tap a microphone
  guard let audioFile = NSDataAsset(name: "audio.pcm") else {
    fatalError("Failed to load audio file")
  }

  // Provide the audio data
  await session.sendAudioRealtime(audioFile.data)

  var outputText = ""
  for try await message in session.responses {
    if case let .content(content) = message.payload {
      content.modelTurn?.parts.forEach { part in
        if let part = part as? InlineDataPart, part.mimeType.starts(with: "audio/pcm") {
          // Handle 16bit pcm audio data at 24khz
          playAudio(part.data)
        }
      }
      // Optional: if you don't require to send more requests.
      if content.isTurnComplete {
        await session.close()
      }
    }
  }
} catch {
  fatalError(error.localizedDescription)
}

Kotlin

Aby użyć Live API, utwórz instancję LiveModel i ustaw modalność odpowiedzi na AUDIO.


// Initialize the Gemini Developer API backend service
// Create a `liveModel` instance with a model that supports the Live API
val liveModel = Firebase.ai(backend = GenerativeBackend.googleAI()).liveModel(
    modelName = "gemini-2.5-flash-native-audio-preview-12-2025",
    // Configure the model to respond with audio
    generationConfig = liveGenerationConfig {
        responseModality = ResponseModality.AUDIO
   }
)

val session = liveModel.connect()

// This is the recommended approach.
// However, you can create your own recorder and handle the stream.
session.startAudioConversation()

Java

Aby użyć Live API, utwórz instancję LiveModel i ustaw modalność odpowiedzi na AUDIO.


ExecutorService executor = Executors.newFixedThreadPool(1);
// Initialize the Gemini Developer API backend service
// Create a `liveModel` instance with a model that supports the Live API
LiveGenerativeModel lm = FirebaseAI.getInstance(GenerativeBackend.googleAI()).liveModel(
        "gemini-2.5-flash-native-audio-preview-12-2025",
        // Configure the model to respond with audio
        new LiveGenerationConfig.Builder()
                .setResponseModality(ResponseModality.AUDIO)
                .build()
);
LiveModelFutures liveModel = LiveModelFutures.from(lm);

ListenableFuture<LiveSession> sessionFuture =  liveModel.connect();

Futures.addCallback(sessionFuture, new FutureCallback<LiveSession>() {
    @Override
    public void onSuccess(LiveSession ses) {
	 LiveSessionFutures session = LiveSessionFutures.from(ses);
        session.startAudioConversation();
    }
    @Override
    public void onFailure(Throwable t) {
        // Handle exceptions
    }
}, executor);

Web

Aby użyć Live API, utwórz instancję LiveGenerativeModel i ustaw modalność odpowiedzi na AUDIO.


import { initializeApp } from "firebase/app";
import { getAI, getLiveGenerativeModel, GoogleAIBackend, ResponseModality } from "firebase/ai";

// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
  // ...
};

// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);

// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });

// Create a `LiveGenerativeModel` instance with a model that supports the Live API
const liveModel = getLiveGenerativeModel(ai, {
  model: "gemini-2.5-flash-native-audio-preview-12-2025",
  // Configure the model to respond with audio
  generationConfig: {
    responseModalities: [ResponseModality.AUDIO],
  },
});

const session = await liveModel.connect();

// Start the audio conversation
const audioConversationController = await startAudioConversation(session);

// ... Later, to stop the audio conversation
// await audioConversationController.stop()

Dart

Aby użyć Live API, utwórz instancję LiveGenerativeModel i ustaw modalność odpowiedzi na audio.


import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';
import 'package:your_audio_recorder_package/your_audio_recorder_package.dart';

late LiveModelSession _session;
final _audioRecorder = YourAudioRecorder();

await Firebase.initializeApp(
  options: DefaultFirebaseOptions.currentPlatform,
);

// Initialize the Gemini Developer API backend service
// Create a `liveGenerativeModel` instance with a model that supports the Live API
final liveModel = FirebaseAI.googleAI().liveGenerativeModel(
  model: 'gemini-2.5-flash-native-audio-preview-12-2025',
  // Configure the model to respond with audio
  liveGenerationConfig: LiveGenerationConfig(
    responseModalities: [ResponseModalities.audio],
  ),
);

_session = await liveModel.connect();

final audioRecordStream = _audioRecorder.startRecordingStream();
// Map the Uint8List stream to InlineDataPart stream
final mediaChunkStream = audioRecordStream.map((data) {
  return InlineDataPart('audio/pcm', data);
});
await _session.startMediaStream(mediaChunkStream);

// In a separate thread, receive the audio response from the model
await for (final message in _session.receive()) {
   // Process the received message
}

Unity

Aby użyć Live API, utwórz instancję LiveModel i ustaw modalność odpowiedzi na Audio.


using Firebase;
using Firebase.AI;

async Task SendTextReceiveAudio() {
  // Initialize the Gemini Developer API backend service
  // Create a `LiveModel` instance with a model that supports the Live API
  var liveModel = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI()).GetLiveModel(
      modelName: "gemini-2.5-flash-native-audio-preview-12-2025",
      // Configure the model to respond with audio
      liveGenerationConfig: new LiveGenerationConfig(
          responseModalities: new[] { ResponseModality.Audio })
    );

  LiveSession session = await liveModel.ConnectAsync();

  // Start a coroutine to send audio from the Microphone
  var recordingCoroutine = StartCoroutine(SendAudio(session));

  // Start receiving the response
  await ReceiveAudio(session);
}

IEnumerator SendAudio(LiveSession liveSession) {
  string microphoneDeviceName = null;
  int recordingFrequency = 16000;
  int recordingBufferSeconds = 2;

  var recordingClip = Microphone.Start(microphoneDeviceName, true,
                                       recordingBufferSeconds, recordingFrequency);

  int lastSamplePosition = 0;
  while (true) {
    if (!Microphone.IsRecording(microphoneDeviceName)) {
      yield break;
    }

    int currentSamplePosition = Microphone.GetPosition(microphoneDeviceName);

    if (currentSamplePosition != lastSamplePosition) {
      // The Microphone uses a circular buffer, so we need to check if the
      // current position wrapped around to the beginning, and handle it
      // accordingly.
      int sampleCount;
      if (currentSamplePosition > lastSamplePosition) {
        sampleCount = currentSamplePosition - lastSamplePosition;
      } else {
        sampleCount = recordingClip.samples - lastSamplePosition + currentSamplePosition;
      }

      if (sampleCount > 0) {
        // Get the audio chunk
        float[] samples = new float[sampleCount];
        recordingClip.GetData(samples, lastSamplePosition);

        // Send the data, discarding the resulting Task to avoid the warning
        _ = liveSession.SendAudioAsync(samples);

        lastSamplePosition = currentSamplePosition;
      }
    }

    // Wait for a short delay before reading the next sample from the Microphone
    const float MicrophoneReadDelay = 0.5f;
    yield return new WaitForSeconds(MicrophoneReadDelay);
  }
}

Queue audioBuffer = new();

async Task ReceiveAudio(LiveSession liveSession) {
  int sampleRate = 24000;
  int channelCount = 1;

  // Create a looping AudioClip to fill with the received audio data
  int bufferSamples = (int)(sampleRate * channelCount);
  AudioClip clip = AudioClip.Create("StreamingPCM", bufferSamples, channelCount,
                                    sampleRate, true, OnAudioRead);

  // Attach the clip to an AudioSource and start playing it
  AudioSource audioSource = GetComponent();
  audioSource.clip = clip;
  audioSource.loop = true;
  audioSource.Play();

  // Start receiving the response
  await foreach (var message in liveSession.ReceiveAsync()) {
    // Process the received message
    foreach (float[] pcmData in message.AudioAsFloat) {
      lock (audioBuffer) {
        foreach (float sample in pcmData) {
          audioBuffer.Enqueue(sample);
        }
      }
    }
  }
}

// This method is called by the AudioClip to load audio data.
private void OnAudioRead(float[] data) {
  int samplesToProvide = data.Length;
  int samplesProvided = 0;

  lock(audioBuffer) {
    while (samplesProvided < samplesToProvide && audioBuffer.Count > 0) {
      data[samplesProvided] = audioBuffer.Dequeue();
      samplesProvided++;
    }
  }

  while (samplesProvided < samplesToProvide) {
    data[samplesProvided] = 0.0f;
    samplesProvided++;
  }
}

Przesyłanie strumieniowe tekstu + wejście audio

Kliknij Gemini API dostawcę, aby wyświetlić na tej stronie treści i kod specyficzne dla tego dostawcy.

W razie potrzeby możesz wysłać tekst wraz z dźwiękiem i otrzymać strumieniowane dane audio.

Swift

Aby użyć Live API, utwórz instancję LiveModel i ustaw modalność odpowiedzi na audio.


import FirebaseAILogic

// Initialize the Gemini Developer API backend service
// Create a `liveModel` instance with a model that supports the Live API
let liveModel = FirebaseAI.firebaseAI(backend: .googleAI()).liveModel(
  modelName: "gemini-2.5-flash-native-audio-preview-12-2025",
  // Configure the model to respond with audio
  generationConfig: LiveGenerationConfig(
    responseModalities: [.audio]
  )
)

do {
  let session = try await liveModel.connect()

  // Provide a text prompt
  let text = "tell a short story"

  await session.sendTextRealtime(text)

  var outputText = ""
  for try await message in session.responses {
    if case let .content(content) = message.payload {
      content.modelTurn?.parts.forEach { part in
        if let part = part as? InlineDataPart, part.mimeType.starts(with: "audio/pcm") {
          // Handle 16bit pcm audio data at 24khz
          playAudio(part.data)
        }
      }
      // Optional: if you don't require to send more requests.
      if content.isTurnComplete {
        await session.close()
      }
    }
  }
} catch {
  fatalError(error.localizedDescription)
}

Kotlin

Aby użyć Live API, utwórz instancję LiveModel i ustaw modalność odpowiedzi na AUDIO.


// Initialize the Gemini Developer API backend service
// Create a `liveModel` instance with a model that supports the Live API
val liveModel = Firebase.ai(backend = GenerativeBackend.googleAI()).liveModel(
    modelName = "gemini-2.5-flash-native-audio-preview-12-2025",
    // Configure the model to respond with audio
    generationConfig = liveGenerationConfig {
        responseModality = ResponseModality.AUDIO
   }
)

val session = liveModel.connect()

// Provide a text prompt
val text = "tell a short story"

session.send(text)

session.receive().collect {
    if(it.turnComplete) {
        // Optional: if you don't require to send more requests.
        session.stopReceiving();
    }
    // Handle 16bit pcm audio data at 24khz
    playAudio(it.data)
}

Java

Aby użyć Live API, utwórz instancję LiveModel i ustaw modalność odpowiedzi na AUDIO.


ExecutorService executor = Executors.newFixedThreadPool(1);
// Initialize the Gemini Developer API backend service
// Create a `liveModel` instance with a model that supports the Live API
LiveGenerativeModel lm = FirebaseAI.getInstance(GenerativeBackend.googleAI()).liveModel(
        "gemini-2.5-flash-native-audio-preview-12-2025",
        // Configure the model to respond with text
        new LiveGenerationConfig.Builder()
                .setResponseModality(ResponseModality.AUDIO)
                .build()
);
LiveModelFutures model = LiveModelFutures.from(lm);
ListenableFuture<LiveSession> sessionFuture =  model.connect();
class LiveContentResponseSubscriber implements Subscriber<LiveContentResponse> {
    @Override
    public void onSubscribe(Subscription s) {
        s.request(Long.MAX_VALUE); // Request an unlimited number of items
    }
    @Override
    public void onNext(LiveContentResponse liveContentResponse) {
        // Handle 16bit pcm audio data at 24khz
	liveContentResponse.getData();
    }
    @Override
    public void onError(Throwable t) {
        System.err.println("Error: " + t.getMessage());
    }
    @Override
    public void onComplete() {
        System.out.println("Done receiving messages!");
    }
}
Futures.addCallback(sessionFuture, new FutureCallback<LiveSession>() {
    @Override
    public void onSuccess(LiveSession ses) {
	 LiveSessionFutures session = LiveSessionFutures.from(ses);
        // Provide a text prompt
        String text = "tell me a short story?";
        session.send(text);
        Publisher<LiveContentResponse> publisher = session.receive();
        publisher.subscribe(new LiveContentResponseSubscriber());
    }
    @Override
    public void onFailure(Throwable t) {
        // Handle exceptions
    }
}, executor);

Web

Aby użyć Live API, utwórz instancję LiveGenerativeModel i ustaw modalność odpowiedzi na AUDIO.


import { initializeApp } from "firebase/app";
import { getAI, getLiveGenerativeModel, GoogleAIBackend, ResponseModality } from "firebase/ai";

// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
  // ...
};

// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);

// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });

// Create a `LiveGenerativeModel` instance with a model that supports the Live API
const liveModel = getLiveGenerativeModel(ai, {
  model: "gemini-2.5-flash-native-audio-preview-12-2025",
  // Configure the model to respond with audio
  generationConfig: {
    responseModalities: [ResponseModality.AUDIO],
  },
});

const session = await liveModel.connect();

// Provide a text prompt
const prompt = "tell a short story";
session.send(prompt);

// Handle the model's audio output
const messages = session.receive();
for await (const message of messages) {
  switch (message.type) {
    case "serverContent":
      if (message.turnComplete) {
        // TODO(developer): Handle turn completion
      } else if (message.interrupted) {
        // TODO(developer): Handle the interruption
        break;
      } else if (message.modelTurn) {
        const parts = message.modelTurn?.parts;
        parts?.forEach((part) => {
          if (part.inlineData) {
            // TODO(developer): Play the audio chunk
          }
        });
      }
      break;
    case "toolCall":
      // Ignore
    case "toolCallCancellation":
      // Ignore
  }
}

Dart

Aby użyć Live API, utwórz instancję LiveGenerativeModel i ustaw modalność odpowiedzi na audio.


import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';
import 'dart:async';
import 'dart:typed_data';

late LiveModelSession _session;

Future<Stream<Uint8List>> textToAudio(String textPrompt) async {
  WidgetsFlutterBinding.ensureInitialized();

  await Firebase.initializeApp(
    options: DefaultFirebaseOptions.currentPlatform,
  );

  // Initialize the Gemini Developer API backend service
  // Create a `liveGenerativeModel` instance with a model that supports the Live API
  final liveModel = FirebaseAI.googleAI().liveGenerativeModel(
    model: 'gemini-2.5-flash-native-audio-preview-12-2025',
    // Configure the model to respond with audio
    liveGenerationConfig: LiveGenerationConfig(
      responseModalities: [ResponseModalities.audio],
    ),
  );

  _session = await liveModel.connect();

  final prompt = Content.text(textPrompt);

  await _session.send(input: prompt);

  return _session.receive().asyncMap((response) async {
    if (response is LiveServerContent && response.modelTurn?.parts != null) {
       for (final part in response.modelTurn!.parts) {
         if (part is InlineDataPart) {
           return part.bytes;
         }
       }
    }
    throw Exception('Audio data not found');
  });
}

Future<void> main() async {
  try {
    final audioStream = await textToAudio('Convert this text to audio.');

    await for (final audioData in audioStream) {
      // Process the audio data (e.g., play it using an audio player package)
      print('Received audio data: ${audioData.length} bytes');
      // Example using flutter_sound (replace with your chosen package):
      // await _flutterSoundPlayer.startPlayer(fromDataBuffer: audioData);
    }
  } catch (e) {
    print('Error: $e');
  }
}

Unity

Aby użyć Live API, utwórz instancję LiveModel i ustaw modalność odpowiedzi na Audio.


using Firebase;
using Firebase.AI;

async Task SendTextReceiveAudio() {
  // Initialize the Gemini Developer API backend service
  // Create a `LiveModel` instance with a model that supports the Live API
  var liveModel = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI()).GetLiveModel(
    modelName: "gemini-2.5-flash-native-audio-preview-12-2025",
    // Configure the model to respond with audio
    liveGenerationConfig: new LiveGenerationConfig(
        responseModalities: new[] { ResponseModality.Audio })
  );

  LiveSession session = await liveModel.ConnectAsync();

  // Provide a text prompt
  var prompt = ModelContent.Text("Convert this text to audio.");
  await session.SendAsync(content: prompt, turnComplete: true);

  // Start receiving the response
  await ReceiveAudio(session);
}

Queue<float> audioBuffer = new();

async Task ReceiveAudio(LiveSession session) {
  int sampleRate = 24000;
  int channelCount = 1;

  // Create a looping AudioClip to fill with the received audio data
  int bufferSamples = (int)(sampleRate * channelCount);
  AudioClip clip = AudioClip.Create("StreamingPCM", bufferSamples, channelCount,
                                    sampleRate, true, OnAudioRead);

  // Attach the clip to an AudioSource and start playing it
  AudioSource audioSource = GetComponent<AudioSource>();
  audioSource.clip = clip;
  audioSource.loop = true;
  audioSource.Play();

  // Start receiving the response
  await foreach (var message in session.ReceiveAsync()) {
    // Process the received message
    foreach (float[] pcmData in message.AudioAsFloat) {
      lock (audioBuffer) {
        foreach (float sample in pcmData) {
          audioBuffer.Enqueue(sample);
        }
      }
    }
  }
}

// This method is called by the AudioClip to load audio data.
private void OnAudioRead(float[] data) {
  int samplesToProvide = data.Length;
  int samplesProvided = 0;

  lock(audioBuffer) {
    while (samplesProvided < samplesToProvide && audioBuffer.Count > 0) {
      data[samplesProvided] = audioBuffer.Dequeue();
      samplesProvided++;
    }
  }

  while (samplesProvided < samplesToProvide) {
    data[samplesProvided] = 0.0f;
    samplesProvided++;
  }
}

Pamiętaj, że podczas aktywnej sesji możesz też wysyłać tekst jako przyrostowe aktualizacje treści.

Przesyłanie strumieniowe wideo + wejście audio

Dostarczanie wejściowych treści wideo zapewnia wizualny kontekst dla wejściowego dźwięku.

Live API oczekuje sekwencji dyskretnych klatek obrazu i obsługuje klatki wideo z częstotliwością 1 klatki na sekundę.

  • Zalecane dane wejściowe: natywna rozdzielczość 768 x 768 pikseli przy 1 klatce na sekundę.

  • Obsługiwane typy MIME: video/x-flv, video/quicktime, video/mpeg, video/mpegs, video/mpg, video/mp4, video/webm, video/wmv, video/3gpp

Przesyłanie strumieniowe danych wejściowych wideo i audio to bardziej zaawansowana implementacja, więc zapoznaj się z przykładową aplikacją, aby dowiedzieć się, jak ją wdrożyć: Swift – wkrótce! | Android – przykładowa aplikacja | Internet – wkrótce! | Flutter – przykładowa aplikacja | Unity – wkrótce!



Zaawansowane możliwości

Modele Live API obsługują te zaawansowane funkcje aktualizacji w trakcie sesji:

Dodawanie przyrostowych aktualizacji treści

Podczas aktywnej sesji możesz dodawać aktualizacje przyrostowe. Użyj tej funkcji, aby wysłać dane wejściowe w postaci tekstu, utworzyć kontekst sesji lub przywrócić kontekst sesji.

  • W przypadku dłuższych kontekstów zalecamy podanie podsumowania pojedynczej wiadomości, aby zwolnić okno kontekstu na potrzeby kolejnych interakcji.

  • W przypadku krótkich kontekstów możesz wysyłać interakcje krok po kroku, aby przedstawić dokładną sekwencję zdarzeń, jak w poniższym fragmencie.

Swift

// Define initial turns (history/context).
let turns: [ModelContent] = [
  ModelContent(role: "user", parts: [TextPart("What is the capital of France?")]),
  ModelContent(role: "model", parts: [TextPart("Paris")]),
]

// Send history, keeping the conversational turn OPEN (false).
await session.sendContent(turns, turnComplete: false)

// Define the new user query.
let newTurn: [ModelContent] = [
  ModelContent(role: "user", parts: [TextPart("What is the capital of Germany?")]),
]

// Send the final query, CLOSING the turn (true) to trigger the model response.
await session.sendContent(newTurn, turnComplete: true)

Kotlin

Not yet supported for Android apps - check back soon!

Java

Not yet supported for Android apps - check back soon!

Web

const turns = [{ text: "Hello from the user!" }];

await session.send(
  turns,
  false // turnComplete: false
);

console.log("Sent history. Waiting for next input...");

// Define the new user query.
const newTurn [{ text: "And what is the capital of Germany?" }];

// Send the final query, CLOSING the turn (true) to trigger the model response.
await session.send(
    newTurn,
    true // turnComplete: true
);
console.log("Sent final query. Model response expected now.");

Dart

// Define initial turns (history/context).
final List turns = [
  Content(
    "user",
    [Part.text("What is the capital of France?")],
  ),
  Content(
    "model",
    [Part.text("Paris")],
  ),
];

// Send history, keeping the conversational turn OPEN (false).
await session.send(
  input: turns,
  turnComplete: false,
);

// Define the new user query.
final List newTurn = [
  Content(
    "user",
    [Part.text("What is the capital of Germany?")],
  ),
];

// Send the final query, CLOSING the turn (true) to trigger the model response.
await session.send(
  input: newTurn,
  turnComplete: true,
);

Unity

// Define initial turns (history/context).
List turns = new List {
    new ModelContent("user", new ModelContent.TextPart("What is the capital of France?") ),
    new ModelContent("model", new ModelContent.TextPart("Paris") ),
};

// Send history, keeping the conversational turn OPEN (false).
foreach (ModelContent turn in turns)
{
    await session.SendAsync(
        content: turn,
        turnComplete: false
    );
}

// Define the new user query.
ModelContent newTurn = ModelContent.Text("What is the capital of Germany?");

// Send the final query, CLOSING the turn (true) to trigger the model response.
await session.SendAsync(
    content: newTurn,
    turnComplete: true
);

Aktualizowanie instrukcji systemowych w trakcie sesji

Dostępne tylko wtedy, gdy jako dostawcę interfejsu API używasz Vertex AI Gemini API.

Instrukcje systemowe możesz aktualizować podczas aktywnej sesji. Użyj tej funkcji, aby dostosować odpowiedzi modelu, np. zmienić język odpowiedzi lub zmodyfikować ton.

Aby zaktualizować instrukcje systemowe w trakcie sesji, możesz wysłać treść tekstową z rolą system. Zaktualizowane instrukcje systemowe będą obowiązywać do końca sesji.

Swift

await session.sendContent(
  [ModelContent(
    role: "system",
    parts: [TextPart("new system instruction")]
  )],
  turnComplete: false
)

Kotlin

Not yet supported for Android apps - check back soon!

Java

Not yet supported for Android apps - check back soon!

Web

Not yet supported for Web apps - check back soon!

Dart

try {
  await _session.send(
    input: Content(
      'system',
      [Part.text('new system instruction')],
    ),
    turnComplete: false,
  );
} catch (e) {
  print('Failed to update system instructions: $e');
}

Unity

try
{
    await session.SendAsync(
        content: new ModelContent(
            "system",
            new ModelContent.TextPart("new system instruction")
        ),
        turnComplete: false
    );
}
catch (Exception e)
{
    Debug.LogError($"Failed to update system instructions: {e.Message}");
}



Nieobsługiwane funkcje

  • Funkcje nieobsługiwane przez Firebase AI Logic podczas korzystania z Live API, ale wkrótce będą dostępne:

    • Obsługa przerw

    • Zarządzanie sesją, w tym wznawianie sesji w ramach wielu połączeń, wydłużanie czasu trwania sesji lub kompresowanie okna kontekstu.

    • Wyłączanie i konfigurowanie wykrywania aktywności głosowej (VAD)

    • Ustawianie rozdzielczości nośnika wejściowego

    • Dodawanie konfiguracji myślenia

    • Włączanie afektywnego dialogu lub proaktywnego dźwięku

    • Otrzymywanie w odpowiedzi wartości UsageMetadata

  • Funkcje nie obsługiwane przez Firebase AI Logic podczas korzystania z Live API, które nie są obecnie planowane.

    • Szablony promptów serwera

    • Wnioskowanie hybrydowe lub na urządzeniu

    • Monitorowanie AI w konsoli Firebase



Co jeszcze możesz zrobić?

  • Dostosuj wdrożenie, korzystając z różnych opcji konfiguracji, np. dodając transkrypcję lub ustawiając głos odpowiedzi.

  • Zwiększ skuteczność wdrożenia, dając modelowi dostęp do narzędzi, takich jak wywoływanie funkcji i grounding z użyciem wyszukiwarki Google. Oficjalna dokumentacja dotycząca korzystania z narzędzi w usłudze Live API będzie dostępna już wkrótce.

  • Dowiedz się więcej o limitach i specyfikacjach korzystania z Live API, takich jak długość sesji, limity szybkości, obsługiwane języki itp.