יכולות של Live API


בדף הזה מתוארות היכולות של Live API כשמשתמשים בו דרך Firebase AI Logic, כולל:

אפשר גם להתאים אישית את ההטמעה באמצעות אפשרויות הגדרה שונות, כמו הוספת תמלול או הגדרת הקול של התשובה.



אופני קלט

בקטע הזה מוסבר איך לשלוח סוגים שונים של קלט למודל Live API. מודלים מקוריים של אודיו תמיד דורשים קלט של אודיו (יחד עם אמצעי קלט נוספים אופציונליים של טקסט או וידאו), והם תמיד מגיבים עם פלט של אודיו.

שידור של קלט אודיו

לוחצים על הספק Gemini API כדי לראות את התוכן והקוד הספציפיים לספק בדף הזה.

היכולת הכי נפוצה של Live API היא סטרימינג אודיו דו-כיווני, כלומר סטרימינג בזמן אמת של קלט ופלט אודיו.

הפונקציה Live API תומכת בפורמטים הבאים של אודיו:

  • פורמט אודיו של הקלט: אודיו PCM גולמי של 16 ביט ב-16kHz little-endian
  • פורמט פלט האודיו: אודיו PCM גולמי של 16 ביט ב-24kHz little-endian

  • סוגי MIME נתמכים: audio/x-aac, ‏ audio/flac, ‏ audio/mp3, audio/m4a, ‏ audio/mpeg, ‏ audio/mpga, ‏ audio/mp4, ‏ audio/ogg, audio/pcm, ‏ audio/wav, ‏ audio/webm

כדי להעביר את קצב הדגימה של אודיו קלט, צריך להגדיר את סוג ה-MIME של כל Blob שמכיל אודיו לערך כמו audio/pcm;rate=16000.

Swift

כדי להשתמש ב-Live API, צריך ליצור מופע של LiveModel ולהגדיר את אופן התגובה ל-audio.


import FirebaseAILogic

// Initialize the Gemini Developer API backend service
// Create a `liveModel` instance with a model that supports the Live API
let liveModel = FirebaseAI.firebaseAI(backend: .googleAI()).liveModel(
  modelName: "gemini-2.5-flash-native-audio-preview-12-2025",
  // Configure the model to respond with audio
  generationConfig: LiveGenerationConfig(
    responseModalities: [.audio]
  )
)

do {
  let session = try await liveModel.connect()

  // Load the audio file, or tap a microphone
  guard let audioFile = NSDataAsset(name: "audio.pcm") else {
    fatalError("Failed to load audio file")
  }

  // Provide the audio data
  await session.sendAudioRealtime(audioFile.data)

  var outputText = ""
  for try await message in session.responses {
    if case let .content(content) = message.payload {
      content.modelTurn?.parts.forEach { part in
        if let part = part as? InlineDataPart, part.mimeType.starts(with: "audio/pcm") {
          // Handle 16bit pcm audio data at 24khz
          playAudio(part.data)
        }
      }
      // Optional: if you don't require to send more requests.
      if content.isTurnComplete {
        await session.close()
      }
    }
  }
} catch {
  fatalError(error.localizedDescription)
}

Kotlin

כדי להשתמש ב-Live API, צריך ליצור מופע של LiveModel ולהגדיר את אופן התגובה ל-AUDIO.


// Initialize the Gemini Developer API backend service
// Create a `liveModel` instance with a model that supports the Live API
val liveModel = Firebase.ai(backend = GenerativeBackend.googleAI()).liveModel(
    modelName = "gemini-2.5-flash-native-audio-preview-12-2025",
    // Configure the model to respond with audio
    generationConfig = liveGenerationConfig {
        responseModality = ResponseModality.AUDIO
   }
)

val session = liveModel.connect()

// This is the recommended approach.
// However, you can create your own recorder and handle the stream.
session.startAudioConversation()

Java

כדי להשתמש ב-Live API, צריך ליצור מופע של LiveModel ולהגדיר את אופן התגובה ל-AUDIO.


ExecutorService executor = Executors.newFixedThreadPool(1);
// Initialize the Gemini Developer API backend service
// Create a `liveModel` instance with a model that supports the Live API
LiveGenerativeModel lm = FirebaseAI.getInstance(GenerativeBackend.googleAI()).liveModel(
        "gemini-2.5-flash-native-audio-preview-12-2025",
        // Configure the model to respond with audio
        new LiveGenerationConfig.Builder()
                .setResponseModality(ResponseModality.AUDIO)
                .build()
);
LiveModelFutures liveModel = LiveModelFutures.from(lm);

ListenableFuture<LiveSession> sessionFuture =  liveModel.connect();

Futures.addCallback(sessionFuture, new FutureCallback<LiveSession>() {
    @Override
    public void onSuccess(LiveSession ses) {
	 LiveSessionFutures session = LiveSessionFutures.from(ses);
        session.startAudioConversation();
    }
    @Override
    public void onFailure(Throwable t) {
        // Handle exceptions
    }
}, executor);

Web

כדי להשתמש ב-Live API, צריך ליצור מופע של LiveGenerativeModel ולהגדיר את אופן התגובה ל-AUDIO.


import { initializeApp } from "firebase/app";
import { getAI, getLiveGenerativeModel, GoogleAIBackend, ResponseModality } from "firebase/ai";

// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
  // ...
};

// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);

// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });

// Create a `LiveGenerativeModel` instance with a model that supports the Live API
const liveModel = getLiveGenerativeModel(ai, {
  model: "gemini-2.5-flash-native-audio-preview-12-2025",
  // Configure the model to respond with audio
  generationConfig: {
    responseModalities: [ResponseModality.AUDIO],
  },
});

const session = await liveModel.connect();

// Start the audio conversation
const audioConversationController = await startAudioConversation(session);

// ... Later, to stop the audio conversation
// await audioConversationController.stop()

Dart

כדי להשתמש ב-Live API, צריך ליצור מכונת LiveGenerativeModel ולהגדיר את אופן התגובה ל-audio.


import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';
import 'package:your_audio_recorder_package/your_audio_recorder_package.dart';

late LiveModelSession _session;
final _audioRecorder = YourAudioRecorder();

await Firebase.initializeApp(
  options: DefaultFirebaseOptions.currentPlatform,
);

// Initialize the Gemini Developer API backend service
// Create a `liveGenerativeModel` instance with a model that supports the Live API
final liveModel = FirebaseAI.googleAI().liveGenerativeModel(
  model: 'gemini-2.5-flash-native-audio-preview-12-2025',
  // Configure the model to respond with audio
  liveGenerationConfig: LiveGenerationConfig(
    responseModalities: [ResponseModalities.audio],
  ),
);

_session = await liveModel.connect();

final audioRecordStream = _audioRecorder.startRecordingStream();
// Map the Uint8List stream to InlineDataPart stream
final mediaChunkStream = audioRecordStream.map((data) {
  return InlineDataPart('audio/pcm', data);
});
await _session.startMediaStream(mediaChunkStream);

// In a separate thread, receive the audio response from the model
await for (final message in _session.receive()) {
   // Process the received message
}

Unity

כדי להשתמש ב-Live API, צריך ליצור מופע של LiveModel ולהגדיר את אופן התגובה ל-Audio.


using Firebase;
using Firebase.AI;

async Task SendTextReceiveAudio() {
  // Initialize the Gemini Developer API backend service
  // Create a `LiveModel` instance with a model that supports the Live API
  var liveModel = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI()).GetLiveModel(
      modelName: "gemini-2.5-flash-native-audio-preview-12-2025",
      // Configure the model to respond with audio
      liveGenerationConfig: new LiveGenerationConfig(
          responseModalities: new[] { ResponseModality.Audio })
    );

  LiveSession session = await liveModel.ConnectAsync();

  // Start a coroutine to send audio from the Microphone
  var recordingCoroutine = StartCoroutine(SendAudio(session));

  // Start receiving the response
  await ReceiveAudio(session);
}

IEnumerator SendAudio(LiveSession liveSession) {
  string microphoneDeviceName = null;
  int recordingFrequency = 16000;
  int recordingBufferSeconds = 2;

  var recordingClip = Microphone.Start(microphoneDeviceName, true,
                                       recordingBufferSeconds, recordingFrequency);

  int lastSamplePosition = 0;
  while (true) {
    if (!Microphone.IsRecording(microphoneDeviceName)) {
      yield break;
    }

    int currentSamplePosition = Microphone.GetPosition(microphoneDeviceName);

    if (currentSamplePosition != lastSamplePosition) {
      // The Microphone uses a circular buffer, so we need to check if the
      // current position wrapped around to the beginning, and handle it
      // accordingly.
      int sampleCount;
      if (currentSamplePosition > lastSamplePosition) {
        sampleCount = currentSamplePosition - lastSamplePosition;
      } else {
        sampleCount = recordingClip.samples - lastSamplePosition + currentSamplePosition;
      }

      if (sampleCount > 0) {
        // Get the audio chunk
        float[] samples = new float[sampleCount];
        recordingClip.GetData(samples, lastSamplePosition);

        // Send the data, discarding the resulting Task to avoid the warning
        _ = liveSession.SendAudioAsync(samples);

        lastSamplePosition = currentSamplePosition;
      }
    }

    // Wait for a short delay before reading the next sample from the Microphone
    const float MicrophoneReadDelay = 0.5f;
    yield return new WaitForSeconds(MicrophoneReadDelay);
  }
}

Queue audioBuffer = new();

async Task ReceiveAudio(LiveSession liveSession) {
  int sampleRate = 24000;
  int channelCount = 1;

  // Create a looping AudioClip to fill with the received audio data
  int bufferSamples = (int)(sampleRate * channelCount);
  AudioClip clip = AudioClip.Create("StreamingPCM", bufferSamples, channelCount,
                                    sampleRate, true, OnAudioRead);

  // Attach the clip to an AudioSource and start playing it
  AudioSource audioSource = GetComponent();
  audioSource.clip = clip;
  audioSource.loop = true;
  audioSource.Play();

  // Start receiving the response
  await foreach (var message in liveSession.ReceiveAsync()) {
    // Process the received message
    foreach (float[] pcmData in message.AudioAsFloat) {
      lock (audioBuffer) {
        foreach (float sample in pcmData) {
          audioBuffer.Enqueue(sample);
        }
      }
    }
  }
}

// This method is called by the AudioClip to load audio data.
private void OnAudioRead(float[] data) {
  int samplesToProvide = data.Length;
  int samplesProvided = 0;

  lock(audioBuffer) {
    while (samplesProvided < samplesToProvide && audioBuffer.Count > 0) {
      data[samplesProvided] = audioBuffer.Dequeue();
      samplesProvided++;
    }
  }

  while (samplesProvided < samplesToProvide) {
    data[samplesProvided] = 0.0f;
    samplesProvided++;
  }
}

שידור טקסט + קלט אודיו

לוחצים על הספק Gemini API כדי לראות את התוכן והקוד הספציפיים לספק בדף הזה.

במקרה הצורך, אפשר לשלוח קלט של טקסט יחד עם קלט האודיו ולקבל פלט של אודיו בסטרימינג.

Swift

כדי להשתמש ב-Live API, צריך ליצור מופע של LiveModel ולהגדיר את אופן התגובה ל-audio.


import FirebaseAILogic

// Initialize the Gemini Developer API backend service
// Create a `liveModel` instance with a model that supports the Live API
let liveModel = FirebaseAI.firebaseAI(backend: .googleAI()).liveModel(
  modelName: "gemini-2.5-flash-native-audio-preview-12-2025",
  // Configure the model to respond with audio
  generationConfig: LiveGenerationConfig(
    responseModalities: [.audio]
  )
)

do {
  let session = try await liveModel.connect()

  // Provide a text prompt
  let text = "tell a short story"

  await session.sendTextRealtime(text)

  var outputText = ""
  for try await message in session.responses {
    if case let .content(content) = message.payload {
      content.modelTurn?.parts.forEach { part in
        if let part = part as? InlineDataPart, part.mimeType.starts(with: "audio/pcm") {
          // Handle 16bit pcm audio data at 24khz
          playAudio(part.data)
        }
      }
      // Optional: if you don't require to send more requests.
      if content.isTurnComplete {
        await session.close()
      }
    }
  }
} catch {
  fatalError(error.localizedDescription)
}

Kotlin

כדי להשתמש ב-Live API, צריך ליצור מופע של LiveModel ולהגדיר את אופן התגובה ל-AUDIO.


// Initialize the Gemini Developer API backend service
// Create a `liveModel` instance with a model that supports the Live API
val liveModel = Firebase.ai(backend = GenerativeBackend.googleAI()).liveModel(
    modelName = "gemini-2.5-flash-native-audio-preview-12-2025",
    // Configure the model to respond with audio
    generationConfig = liveGenerationConfig {
        responseModality = ResponseModality.AUDIO
   }
)

val session = liveModel.connect()

// Provide a text prompt
val text = "tell a short story"

session.send(text)

session.receive().collect {
    if(it.turnComplete) {
        // Optional: if you don't require to send more requests.
        session.stopReceiving();
    }
    // Handle 16bit pcm audio data at 24khz
    playAudio(it.data)
}

Java

כדי להשתמש ב-Live API, צריך ליצור מופע של LiveModel ולהגדיר את אופן התגובה ל-AUDIO.


ExecutorService executor = Executors.newFixedThreadPool(1);
// Initialize the Gemini Developer API backend service
// Create a `liveModel` instance with a model that supports the Live API
LiveGenerativeModel lm = FirebaseAI.getInstance(GenerativeBackend.googleAI()).liveModel(
        "gemini-2.5-flash-native-audio-preview-12-2025",
        // Configure the model to respond with text
        new LiveGenerationConfig.Builder()
                .setResponseModality(ResponseModality.AUDIO)
                .build()
);
LiveModelFutures model = LiveModelFutures.from(lm);
ListenableFuture<LiveSession> sessionFuture =  model.connect();
class LiveContentResponseSubscriber implements Subscriber<LiveContentResponse> {
    @Override
    public void onSubscribe(Subscription s) {
        s.request(Long.MAX_VALUE); // Request an unlimited number of items
    }
    @Override
    public void onNext(LiveContentResponse liveContentResponse) {
        // Handle 16bit pcm audio data at 24khz
	liveContentResponse.getData();
    }
    @Override
    public void onError(Throwable t) {
        System.err.println("Error: " + t.getMessage());
    }
    @Override
    public void onComplete() {
        System.out.println("Done receiving messages!");
    }
}
Futures.addCallback(sessionFuture, new FutureCallback<LiveSession>() {
    @Override
    public void onSuccess(LiveSession ses) {
	 LiveSessionFutures session = LiveSessionFutures.from(ses);
        // Provide a text prompt
        String text = "tell me a short story?";
        session.send(text);
        Publisher<LiveContentResponse> publisher = session.receive();
        publisher.subscribe(new LiveContentResponseSubscriber());
    }
    @Override
    public void onFailure(Throwable t) {
        // Handle exceptions
    }
}, executor);

Web

כדי להשתמש ב-Live API, צריך ליצור מופע של LiveGenerativeModel ולהגדיר את אופן התגובה ל-AUDIO.


import { initializeApp } from "firebase/app";
import { getAI, getLiveGenerativeModel, GoogleAIBackend, ResponseModality } from "firebase/ai";

// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
  // ...
};

// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);

// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });

// Create a `LiveGenerativeModel` instance with a model that supports the Live API
const liveModel = getLiveGenerativeModel(ai, {
  model: "gemini-2.5-flash-native-audio-preview-12-2025",
  // Configure the model to respond with audio
  generationConfig: {
    responseModalities: [ResponseModality.AUDIO],
  },
});

const session = await liveModel.connect();

// Provide a text prompt
const prompt = "tell a short story";
session.send(prompt);

// Handle the model's audio output
const messages = session.receive();
for await (const message of messages) {
  switch (message.type) {
    case "serverContent":
      if (message.turnComplete) {
        // TODO(developer): Handle turn completion
      } else if (message.interrupted) {
        // TODO(developer): Handle the interruption
        break;
      } else if (message.modelTurn) {
        const parts = message.modelTurn?.parts;
        parts?.forEach((part) => {
          if (part.inlineData) {
            // TODO(developer): Play the audio chunk
          }
        });
      }
      break;
    case "toolCall":
      // Ignore
    case "toolCallCancellation":
      // Ignore
  }
}

Dart

כדי להשתמש ב-Live API, צריך ליצור מכונת LiveGenerativeModel ולהגדיר את אופן התגובה ל-audio.


import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';
import 'dart:async';
import 'dart:typed_data';

late LiveModelSession _session;

Future<Stream<Uint8List>> textToAudio(String textPrompt) async {
  WidgetsFlutterBinding.ensureInitialized();

  await Firebase.initializeApp(
    options: DefaultFirebaseOptions.currentPlatform,
  );

  // Initialize the Gemini Developer API backend service
  // Create a `liveGenerativeModel` instance with a model that supports the Live API
  final liveModel = FirebaseAI.googleAI().liveGenerativeModel(
    model: 'gemini-2.5-flash-native-audio-preview-12-2025',
    // Configure the model to respond with audio
    liveGenerationConfig: LiveGenerationConfig(
      responseModalities: [ResponseModalities.audio],
    ),
  );

  _session = await liveModel.connect();

  final prompt = Content.text(textPrompt);

  await _session.send(input: prompt);

  return _session.receive().asyncMap((response) async {
    if (response is LiveServerContent && response.modelTurn?.parts != null) {
       for (final part in response.modelTurn!.parts) {
         if (part is InlineDataPart) {
           return part.bytes;
         }
       }
    }
    throw Exception('Audio data not found');
  });
}

Future<void> main() async {
  try {
    final audioStream = await textToAudio('Convert this text to audio.');

    await for (final audioData in audioStream) {
      // Process the audio data (e.g., play it using an audio player package)
      print('Received audio data: ${audioData.length} bytes');
      // Example using flutter_sound (replace with your chosen package):
      // await _flutterSoundPlayer.startPlayer(fromDataBuffer: audioData);
    }
  } catch (e) {
    print('Error: $e');
  }
}

Unity

כדי להשתמש ב-Live API, צריך ליצור מופע של LiveModel ולהגדיר את אופן התגובה ל-Audio.


using Firebase;
using Firebase.AI;

async Task SendTextReceiveAudio() {
  // Initialize the Gemini Developer API backend service
  // Create a `LiveModel` instance with a model that supports the Live API
  var liveModel = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI()).GetLiveModel(
    modelName: "gemini-2.5-flash-native-audio-preview-12-2025",
    // Configure the model to respond with audio
    liveGenerationConfig: new LiveGenerationConfig(
        responseModalities: new[] { ResponseModality.Audio })
  );

  LiveSession session = await liveModel.ConnectAsync();

  // Provide a text prompt
  var prompt = ModelContent.Text("Convert this text to audio.");
  await session.SendAsync(content: prompt, turnComplete: true);

  // Start receiving the response
  await ReceiveAudio(session);
}

Queue<float> audioBuffer = new();

async Task ReceiveAudio(LiveSession session) {
  int sampleRate = 24000;
  int channelCount = 1;

  // Create a looping AudioClip to fill with the received audio data
  int bufferSamples = (int)(sampleRate * channelCount);
  AudioClip clip = AudioClip.Create("StreamingPCM", bufferSamples, channelCount,
                                    sampleRate, true, OnAudioRead);

  // Attach the clip to an AudioSource and start playing it
  AudioSource audioSource = GetComponent<AudioSource>();
  audioSource.clip = clip;
  audioSource.loop = true;
  audioSource.Play();

  // Start receiving the response
  await foreach (var message in session.ReceiveAsync()) {
    // Process the received message
    foreach (float[] pcmData in message.AudioAsFloat) {
      lock (audioBuffer) {
        foreach (float sample in pcmData) {
          audioBuffer.Enqueue(sample);
        }
      }
    }
  }
}

// This method is called by the AudioClip to load audio data.
private void OnAudioRead(float[] data) {
  int samplesToProvide = data.Length;
  int samplesProvided = 0;

  lock(audioBuffer) {
    while (samplesProvided < samplesToProvide && audioBuffer.Count > 0) {
      data[samplesProvided] = audioBuffer.Dequeue();
      samplesProvided++;
    }
  }

  while (samplesProvided < samplesToProvide) {
    data[samplesProvided] = 0.0f;
    samplesProvided++;
  }
}

שימו לב שאפשר גם לשלוח טקסט כעדכוני תוכן מצטברים במהלך סשן פעיל.

סטרימינג של וידאו + קלט אודיו

הוספת תוכן וידאו כקלט מספקת הקשר חזותי לאודיו של הקלט.

הפונקציה Live API מצפה לרצף של פריימים נפרדים של תמונות, ותומכת בקלט של פריימים של סרטונים בקצב של פרים אחד לשנייה (FPS).

  • קלט מומלץ: רזולוציה מקורית של ‎768x768 ב-1 FPS.

  • סוגי MIME נתמכים: video/x-flv, ‏ video/quicktime, ‏ video/mpeg,‏ video/mpegs, ‏ video/mpg, ‏ video/mp4, ‏ video/webm, ‏ video/wmv, ‏ video/3gpp

הטמעה של הזרמת וידאו + אודיו היא מתקדמת יותר, לכן כדאי לעיין באפליקציה לדוגמה כדי ללמוד איך להטמיע את היכולת הזו: ‫Swift – בקרוב! ‫| Androidאפליקציה לדוגמה | אינטרנט – בקרוב! ‫| Flutterאפליקציה לדוגמה | ‫Unity – בקרוב!



יכולות מתקדמות

מודלים של Live API תומכים ביכולות המתקדמות הבאות של עדכונים באמצע הסשן:

הוספת עדכונים מצטברים של תוכן

אפשר להוסיף עדכונים מצטברים במהלך סשן פעיל. אפשר להשתמש בזה כדי לשלוח קלט טקסט, ליצור הקשר של סשן או לשחזר הקשר של סשן.

  • בהקשרים ארוכים יותר, מומלץ לספק סיכום של הודעה אחת כדי לפנות מקום בחלון ההקשר לאינטראקציות הבאות.

  • במקרים של הקשרים קצרים, אפשר לשלוח אינטראקציות של תור אחר תור כדי לייצג את רצף האירועים המדויק, כמו בקטע הקוד שבהמשך.

Swift

// Define initial turns (history/context).
let turns: [ModelContent] = [
  ModelContent(role: "user", parts: [TextPart("What is the capital of France?")]),
  ModelContent(role: "model", parts: [TextPart("Paris")]),
]

// Send history, keeping the conversational turn OPEN (false).
await session.sendContent(turns, turnComplete: false)

// Define the new user query.
let newTurn: [ModelContent] = [
  ModelContent(role: "user", parts: [TextPart("What is the capital of Germany?")]),
]

// Send the final query, CLOSING the turn (true) to trigger the model response.
await session.sendContent(newTurn, turnComplete: true)

Kotlin

Not yet supported for Android apps - check back soon!

Java

Not yet supported for Android apps - check back soon!

Web

const turns = [{ text: "Hello from the user!" }];

await session.send(
  turns,
  false // turnComplete: false
);

console.log("Sent history. Waiting for next input...");

// Define the new user query.
const newTurn [{ text: "And what is the capital of Germany?" }];

// Send the final query, CLOSING the turn (true) to trigger the model response.
await session.send(
    newTurn,
    true // turnComplete: true
);
console.log("Sent final query. Model response expected now.");

Dart

// Define initial turns (history/context).
final List turns = [
  Content(
    "user",
    [Part.text("What is the capital of France?")],
  ),
  Content(
    "model",
    [Part.text("Paris")],
  ),
];

// Send history, keeping the conversational turn OPEN (false).
await session.send(
  input: turns,
  turnComplete: false,
);

// Define the new user query.
final List newTurn = [
  Content(
    "user",
    [Part.text("What is the capital of Germany?")],
  ),
];

// Send the final query, CLOSING the turn (true) to trigger the model response.
await session.send(
  input: newTurn,
  turnComplete: true,
);

Unity

// Define initial turns (history/context).
List turns = new List {
    new ModelContent("user", new ModelContent.TextPart("What is the capital of France?") ),
    new ModelContent("model", new ModelContent.TextPart("Paris") ),
};

// Send history, keeping the conversational turn OPEN (false).
foreach (ModelContent turn in turns)
{
    await session.SendAsync(
        content: turn,
        turnComplete: false
    );
}

// Define the new user query.
ModelContent newTurn = ModelContent.Text("What is the capital of Germany?");

// Send the final query, CLOSING the turn (true) to trigger the model response.
await session.SendAsync(
    content: newTurn,
    turnComplete: true
);

עדכון הוראות המערכת באמצע הסשן

האפשרות הזו זמינה רק כשמשתמשים ב-Vertex AI Gemini API כספק ה-API.

אפשר לעדכן את ההוראות למערכת במהלך סשן פעיל. אפשר להשתמש בה כדי להתאים את התשובות של המודל, למשל כדי לשנות את שפת התשובה או לשנות את הטון.

כדי לעדכן את הוראות המערכת באמצע הסשן, אפשר לשלוח תוכן טקסט עם התפקיד system. ההוראות המעודכנות למערכת יישארו בתוקף למשך שארית הסשן.

Swift

await session.sendContent(
  [ModelContent(
    role: "system",
    parts: [TextPart("new system instruction")]
  )],
  turnComplete: false
)

Kotlin

Not yet supported for Android apps - check back soon!

Java

Not yet supported for Android apps - check back soon!

Web

Not yet supported for Web apps - check back soon!

Dart

try {
  await _session.send(
    input: Content(
      'system',
      [Part.text('new system instruction')],
    ),
    turnComplete: false,
  );
} catch (e) {
  print('Failed to update system instructions: $e');
}

Unity

try
{
    await session.SendAsync(
        content: new ModelContent(
            "system",
            new ModelContent.TextPart("new system instruction")
        ),
        turnComplete: false
    );
}
catch (Exception e)
{
    Debug.LogError($"Failed to update system instructions: {e.Message}");
}



תכונות שלא נתמכות

  • תכונות שעדיין לא נתמכות על ידי Firebase AI Logic כשמשתמשים ב-Live API, אבל הן יהיו זמינות בקרוב!

    • איך מתמודדים עם הפרעות

    • ניהול סשנים, כולל המשכת סשן בכמה חיבורים, הארכת משך הסשן או דחיסת חלון ההקשר.

    • השבתה והגדרה של זיהוי פעילות קולית (VAD)

    • הגדרת הרזולוציה של קלט המדיה

    • הוספת הגדרת חשיבה

    • הפעלת שיחה מותאמת-רגש או אודיו פרואקטיבי

    • קבלת UsageMetadata בתגובה

  • תכונות שלא נתמכות על ידי Firebase AI Logic כשמשתמשים ב-Live API, והן לא מתוכננות כרגע.

    • תבניות הנחיות לשרת

    • הסקה היברידית או הסקה במכשיר

    • מעקב אחרי שימוש בתכונות AI במסוף Firebase



מה עוד אפשר לעשות?

  • אפשר להתאים אישית את ההטמעה באמצעות מגוון אפשרויות הגדרה, כמו הוספת תמלול או הגדרת הקול של התשובה.

  • כדי לשפר את ההטמעה, אפשר לתת למודל גישה לכלים כמו קריאה לפונקציה ועיגון באמצעות חיפוש Google. בקרוב נפרסם מסמכים רשמיים בנושא השימוש בכלים עם Live API.

  • מידע על מגבלות ומפרטים לשימוש ב-Live API, כמו משך הפגישה, מגבלות קצב, שפות נתמכות וכו'.