Questa pagina descrive le funzionalità di Live API quando lo utilizzi tramite Firebase AI Logic, tra cui:
Modalità di input supportate, tra cui:
Funzionalità avanzate, inclusi gli aggiornamenti a metà sessione:
Elenco delle funzionalità non supportate, molte delle quali saranno disponibili a breve.
Puoi anche personalizzare l'implementazione utilizzando varie opzioni di configurazione, come l'aggiunta della trascrizione o l'impostazione della voce di risposta.
Modalità di input
Questa sezione descrive come inviare vari tipi di input a un modello Live API. I modelli audio nativi richiedono sempre un input audio (insieme a modalità di input di testo o video aggiuntive facoltative) e rispondono sempre con un output audio.
Riproduci in streaming l'input audio
|
Fai clic sul tuo fornitore Gemini API per visualizzare i contenuti e il codice specifici del fornitore in questa pagina. |
La funzionalità più comune di Live API è lo streaming audio bidirezionale, ovvero lo streaming in tempo reale sia dell'input che dell'output audio.
Live API supporta i seguenti formati audio:
- Formato audio di input:audio PCM a 16 bit non elaborato a 16 kHz little-endian
Formato audio di output:audio PCM raw a 16 bit a 24 kHz little-endian
Tipi MIME supportati:
audio/x-aac,audio/flac,audio/mp3,audio/m4a,audio/mpeg,audio/mpga,audio/mp4,audio/ogg,audio/pcm,audio/wav,audio/webm
Per comunicare la frequenza di campionamento dell'audio di input, imposta il tipo MIME di ogni
blob contenente audio su un valore come audio/pcm;rate=16000.
Swift
Per utilizzare Live API, crea un'istanza LiveModel e imposta la modalità di risposta su audio.
import FirebaseAILogic
// Initialize the Gemini Developer API backend service
// Create a `liveModel` instance with a model that supports the Live API
let liveModel = FirebaseAI.firebaseAI(backend: .googleAI()).liveModel(
modelName: "gemini-2.5-flash-native-audio-preview-12-2025",
// Configure the model to respond with audio
generationConfig: LiveGenerationConfig(
responseModalities: [.audio]
)
)
do {
let session = try await liveModel.connect()
// Load the audio file, or tap a microphone
guard let audioFile = NSDataAsset(name: "audio.pcm") else {
fatalError("Failed to load audio file")
}
// Provide the audio data
await session.sendAudioRealtime(audioFile.data)
var outputText = ""
for try await message in session.responses {
if case let .content(content) = message.payload {
content.modelTurn?.parts.forEach { part in
if let part = part as? InlineDataPart, part.mimeType.starts(with: "audio/pcm") {
// Handle 16bit pcm audio data at 24khz
playAudio(part.data)
}
}
// Optional: if you don't require to send more requests.
if content.isTurnComplete {
await session.close()
}
}
}
} catch {
fatalError(error.localizedDescription)
}
Kotlin
Per utilizzare Live API, crea un'istanza LiveModel e imposta la modalità di risposta su AUDIO.
// Initialize the Gemini Developer API backend service
// Create a `liveModel` instance with a model that supports the Live API
val liveModel = Firebase.ai(backend = GenerativeBackend.googleAI()).liveModel(
modelName = "gemini-2.5-flash-native-audio-preview-12-2025",
// Configure the model to respond with audio
generationConfig = liveGenerationConfig {
responseModality = ResponseModality.AUDIO
}
)
val session = liveModel.connect()
// This is the recommended approach.
// However, you can create your own recorder and handle the stream.
session.startAudioConversation()
Java
Per utilizzare Live API, crea un'istanza LiveModel e imposta la modalità di risposta su AUDIO.
ExecutorService executor = Executors.newFixedThreadPool(1);
// Initialize the Gemini Developer API backend service
// Create a `liveModel` instance with a model that supports the Live API
LiveGenerativeModel lm = FirebaseAI.getInstance(GenerativeBackend.googleAI()).liveModel(
"gemini-2.5-flash-native-audio-preview-12-2025",
// Configure the model to respond with audio
new LiveGenerationConfig.Builder()
.setResponseModality(ResponseModality.AUDIO)
.build()
);
LiveModelFutures liveModel = LiveModelFutures.from(lm);
ListenableFuture<LiveSession> sessionFuture = liveModel.connect();
Futures.addCallback(sessionFuture, new FutureCallback<LiveSession>() {
@Override
public void onSuccess(LiveSession ses) {
LiveSessionFutures session = LiveSessionFutures.from(ses);
session.startAudioConversation();
}
@Override
public void onFailure(Throwable t) {
// Handle exceptions
}
}, executor);
Web
Per utilizzare Live API, crea un'istanza LiveGenerativeModel e imposta la modalità di risposta su AUDIO.
import { initializeApp } from "firebase/app";
import { getAI, getLiveGenerativeModel, GoogleAIBackend, ResponseModality } from "firebase/ai";
// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
// ...
};
// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);
// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });
// Create a `LiveGenerativeModel` instance with a model that supports the Live API
const liveModel = getLiveGenerativeModel(ai, {
model: "gemini-2.5-flash-native-audio-preview-12-2025",
// Configure the model to respond with audio
generationConfig: {
responseModalities: [ResponseModality.AUDIO],
},
});
const session = await liveModel.connect();
// Start the audio conversation
const audioConversationController = await startAudioConversation(session);
// ... Later, to stop the audio conversation
// await audioConversationController.stop()
Dart
Per utilizzare Live API, crea un'istanza LiveGenerativeModel e imposta la modalità di risposta su audio.
import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';
import 'package:your_audio_recorder_package/your_audio_recorder_package.dart';
late LiveModelSession _session;
final _audioRecorder = YourAudioRecorder();
await Firebase.initializeApp(
options: DefaultFirebaseOptions.currentPlatform,
);
// Initialize the Gemini Developer API backend service
// Create a `liveGenerativeModel` instance with a model that supports the Live API
final liveModel = FirebaseAI.googleAI().liveGenerativeModel(
model: 'gemini-2.5-flash-native-audio-preview-12-2025',
// Configure the model to respond with audio
liveGenerationConfig: LiveGenerationConfig(
responseModalities: [ResponseModalities.audio],
),
);
_session = await liveModel.connect();
final audioRecordStream = _audioRecorder.startRecordingStream();
// Map the Uint8List stream to InlineDataPart stream
final mediaChunkStream = audioRecordStream.map((data) {
return InlineDataPart('audio/pcm', data);
});
await _session.startMediaStream(mediaChunkStream);
// In a separate thread, receive the audio response from the model
await for (final message in _session.receive()) {
// Process the received message
}
Unity
Per utilizzare Live API, crea un'istanza LiveModel e imposta la modalità di risposta su Audio.
using Firebase;
using Firebase.AI;
async Task SendTextReceiveAudio() {
// Initialize the Gemini Developer API backend service
// Create a `LiveModel` instance with a model that supports the Live API
var liveModel = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI()).GetLiveModel(
modelName: "gemini-2.5-flash-native-audio-preview-12-2025",
// Configure the model to respond with audio
liveGenerationConfig: new LiveGenerationConfig(
responseModalities: new[] { ResponseModality.Audio })
);
LiveSession session = await liveModel.ConnectAsync();
// Start a coroutine to send audio from the Microphone
var recordingCoroutine = StartCoroutine(SendAudio(session));
// Start receiving the response
await ReceiveAudio(session);
}
IEnumerator SendAudio(LiveSession liveSession) {
string microphoneDeviceName = null;
int recordingFrequency = 16000;
int recordingBufferSeconds = 2;
var recordingClip = Microphone.Start(microphoneDeviceName, true,
recordingBufferSeconds, recordingFrequency);
int lastSamplePosition = 0;
while (true) {
if (!Microphone.IsRecording(microphoneDeviceName)) {
yield break;
}
int currentSamplePosition = Microphone.GetPosition(microphoneDeviceName);
if (currentSamplePosition != lastSamplePosition) {
// The Microphone uses a circular buffer, so we need to check if the
// current position wrapped around to the beginning, and handle it
// accordingly.
int sampleCount;
if (currentSamplePosition > lastSamplePosition) {
sampleCount = currentSamplePosition - lastSamplePosition;
} else {
sampleCount = recordingClip.samples - lastSamplePosition + currentSamplePosition;
}
if (sampleCount > 0) {
// Get the audio chunk
float[] samples = new float[sampleCount];
recordingClip.GetData(samples, lastSamplePosition);
// Send the data, discarding the resulting Task to avoid the warning
_ = liveSession.SendAudioAsync(samples);
lastSamplePosition = currentSamplePosition;
}
}
// Wait for a short delay before reading the next sample from the Microphone
const float MicrophoneReadDelay = 0.5f;
yield return new WaitForSeconds(MicrophoneReadDelay);
}
}
Queue audioBuffer = new();
async Task ReceiveAudio(LiveSession liveSession) {
int sampleRate = 24000;
int channelCount = 1;
// Create a looping AudioClip to fill with the received audio data
int bufferSamples = (int)(sampleRate * channelCount);
AudioClip clip = AudioClip.Create("StreamingPCM", bufferSamples, channelCount,
sampleRate, true, OnAudioRead);
// Attach the clip to an AudioSource and start playing it
AudioSource audioSource = GetComponent();
audioSource.clip = clip;
audioSource.loop = true;
audioSource.Play();
// Start receiving the response
await foreach (var message in liveSession.ReceiveAsync()) {
// Process the received message
foreach (float[] pcmData in message.AudioAsFloat) {
lock (audioBuffer) {
foreach (float sample in pcmData) {
audioBuffer.Enqueue(sample);
}
}
}
}
}
// This method is called by the AudioClip to load audio data.
private void OnAudioRead(float[] data) {
int samplesToProvide = data.Length;
int samplesProvided = 0;
lock(audioBuffer) {
while (samplesProvided < samplesToProvide && audioBuffer.Count > 0) {
data[samplesProvided] = audioBuffer.Dequeue();
samplesProvided++;
}
}
while (samplesProvided < samplesToProvide) {
data[samplesProvided] = 0.0f;
samplesProvided++;
}
}
Stream text + audio input
|
Fai clic sul tuo fornitore Gemini API per visualizzare i contenuti e il codice specifici del fornitore in questa pagina. |
Se necessario, puoi inviare input di testo insieme all'input audio e ricevere output audio in streaming.
Swift
Per utilizzare Live API, crea un'istanza LiveModel e imposta la modalità di risposta su audio.
import FirebaseAILogic
// Initialize the Gemini Developer API backend service
// Create a `liveModel` instance with a model that supports the Live API
let liveModel = FirebaseAI.firebaseAI(backend: .googleAI()).liveModel(
modelName: "gemini-2.5-flash-native-audio-preview-12-2025",
// Configure the model to respond with audio
generationConfig: LiveGenerationConfig(
responseModalities: [.audio]
)
)
do {
let session = try await liveModel.connect()
// Provide a text prompt
let text = "tell a short story"
await session.sendTextRealtime(text)
var outputText = ""
for try await message in session.responses {
if case let .content(content) = message.payload {
content.modelTurn?.parts.forEach { part in
if let part = part as? InlineDataPart, part.mimeType.starts(with: "audio/pcm") {
// Handle 16bit pcm audio data at 24khz
playAudio(part.data)
}
}
// Optional: if you don't require to send more requests.
if content.isTurnComplete {
await session.close()
}
}
}
} catch {
fatalError(error.localizedDescription)
}
Kotlin
Per utilizzare Live API, crea un'istanza LiveModel e imposta la modalità di risposta su AUDIO.
// Initialize the Gemini Developer API backend service
// Create a `liveModel` instance with a model that supports the Live API
val liveModel = Firebase.ai(backend = GenerativeBackend.googleAI()).liveModel(
modelName = "gemini-2.5-flash-native-audio-preview-12-2025",
// Configure the model to respond with audio
generationConfig = liveGenerationConfig {
responseModality = ResponseModality.AUDIO
}
)
val session = liveModel.connect()
// Provide a text prompt
val text = "tell a short story"
session.send(text)
session.receive().collect {
if(it.turnComplete) {
// Optional: if you don't require to send more requests.
session.stopReceiving();
}
// Handle 16bit pcm audio data at 24khz
playAudio(it.data)
}
Java
Per utilizzare Live API, crea un'istanza LiveModel e imposta la modalità di risposta su AUDIO.
ExecutorService executor = Executors.newFixedThreadPool(1);
// Initialize the Gemini Developer API backend service
// Create a `liveModel` instance with a model that supports the Live API
LiveGenerativeModel lm = FirebaseAI.getInstance(GenerativeBackend.googleAI()).liveModel(
"gemini-2.5-flash-native-audio-preview-12-2025",
// Configure the model to respond with text
new LiveGenerationConfig.Builder()
.setResponseModality(ResponseModality.AUDIO)
.build()
);
LiveModelFutures model = LiveModelFutures.from(lm);
ListenableFuture<LiveSession> sessionFuture = model.connect();
class LiveContentResponseSubscriber implements Subscriber<LiveContentResponse> {
@Override
public void onSubscribe(Subscription s) {
s.request(Long.MAX_VALUE); // Request an unlimited number of items
}
@Override
public void onNext(LiveContentResponse liveContentResponse) {
// Handle 16bit pcm audio data at 24khz
liveContentResponse.getData();
}
@Override
public void onError(Throwable t) {
System.err.println("Error: " + t.getMessage());
}
@Override
public void onComplete() {
System.out.println("Done receiving messages!");
}
}
Futures.addCallback(sessionFuture, new FutureCallback<LiveSession>() {
@Override
public void onSuccess(LiveSession ses) {
LiveSessionFutures session = LiveSessionFutures.from(ses);
// Provide a text prompt
String text = "tell me a short story?";
session.send(text);
Publisher<LiveContentResponse> publisher = session.receive();
publisher.subscribe(new LiveContentResponseSubscriber());
}
@Override
public void onFailure(Throwable t) {
// Handle exceptions
}
}, executor);
Web
Per utilizzare Live API, crea un'istanza LiveGenerativeModel e imposta la modalità di risposta su AUDIO.
import { initializeApp } from "firebase/app";
import { getAI, getLiveGenerativeModel, GoogleAIBackend, ResponseModality } from "firebase/ai";
// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
// ...
};
// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);
// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });
// Create a `LiveGenerativeModel` instance with a model that supports the Live API
const liveModel = getLiveGenerativeModel(ai, {
model: "gemini-2.5-flash-native-audio-preview-12-2025",
// Configure the model to respond with audio
generationConfig: {
responseModalities: [ResponseModality.AUDIO],
},
});
const session = await liveModel.connect();
// Provide a text prompt
const prompt = "tell a short story";
session.send(prompt);
// Handle the model's audio output
const messages = session.receive();
for await (const message of messages) {
switch (message.type) {
case "serverContent":
if (message.turnComplete) {
// TODO(developer): Handle turn completion
} else if (message.interrupted) {
// TODO(developer): Handle the interruption
break;
} else if (message.modelTurn) {
const parts = message.modelTurn?.parts;
parts?.forEach((part) => {
if (part.inlineData) {
// TODO(developer): Play the audio chunk
}
});
}
break;
case "toolCall":
// Ignore
case "toolCallCancellation":
// Ignore
}
}
Dart
Per utilizzare Live API, crea un'istanza LiveGenerativeModel e imposta la modalità di risposta su audio.
import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';
import 'dart:async';
import 'dart:typed_data';
late LiveModelSession _session;
Future<Stream<Uint8List>> textToAudio(String textPrompt) async {
WidgetsFlutterBinding.ensureInitialized();
await Firebase.initializeApp(
options: DefaultFirebaseOptions.currentPlatform,
);
// Initialize the Gemini Developer API backend service
// Create a `liveGenerativeModel` instance with a model that supports the Live API
final liveModel = FirebaseAI.googleAI().liveGenerativeModel(
model: 'gemini-2.5-flash-native-audio-preview-12-2025',
// Configure the model to respond with audio
liveGenerationConfig: LiveGenerationConfig(
responseModalities: [ResponseModalities.audio],
),
);
_session = await liveModel.connect();
final prompt = Content.text(textPrompt);
await _session.send(input: prompt);
return _session.receive().asyncMap((response) async {
if (response is LiveServerContent && response.modelTurn?.parts != null) {
for (final part in response.modelTurn!.parts) {
if (part is InlineDataPart) {
return part.bytes;
}
}
}
throw Exception('Audio data not found');
});
}
Future<void> main() async {
try {
final audioStream = await textToAudio('Convert this text to audio.');
await for (final audioData in audioStream) {
// Process the audio data (e.g., play it using an audio player package)
print('Received audio data: ${audioData.length} bytes');
// Example using flutter_sound (replace with your chosen package):
// await _flutterSoundPlayer.startPlayer(fromDataBuffer: audioData);
}
} catch (e) {
print('Error: $e');
}
}
Unity
Per utilizzare Live API, crea un'istanza LiveModel e imposta la modalità di risposta su Audio.
using Firebase;
using Firebase.AI;
async Task SendTextReceiveAudio() {
// Initialize the Gemini Developer API backend service
// Create a `LiveModel` instance with a model that supports the Live API
var liveModel = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI()).GetLiveModel(
modelName: "gemini-2.5-flash-native-audio-preview-12-2025",
// Configure the model to respond with audio
liveGenerationConfig: new LiveGenerationConfig(
responseModalities: new[] { ResponseModality.Audio })
);
LiveSession session = await liveModel.ConnectAsync();
// Provide a text prompt
var prompt = ModelContent.Text("Convert this text to audio.");
await session.SendAsync(content: prompt, turnComplete: true);
// Start receiving the response
await ReceiveAudio(session);
}
Queue<float> audioBuffer = new();
async Task ReceiveAudio(LiveSession session) {
int sampleRate = 24000;
int channelCount = 1;
// Create a looping AudioClip to fill with the received audio data
int bufferSamples = (int)(sampleRate * channelCount);
AudioClip clip = AudioClip.Create("StreamingPCM", bufferSamples, channelCount,
sampleRate, true, OnAudioRead);
// Attach the clip to an AudioSource and start playing it
AudioSource audioSource = GetComponent<AudioSource>();
audioSource.clip = clip;
audioSource.loop = true;
audioSource.Play();
// Start receiving the response
await foreach (var message in session.ReceiveAsync()) {
// Process the received message
foreach (float[] pcmData in message.AudioAsFloat) {
lock (audioBuffer) {
foreach (float sample in pcmData) {
audioBuffer.Enqueue(sample);
}
}
}
}
}
// This method is called by the AudioClip to load audio data.
private void OnAudioRead(float[] data) {
int samplesToProvide = data.Length;
int samplesProvided = 0;
lock(audioBuffer) {
while (samplesProvided < samplesToProvide && audioBuffer.Count > 0) {
data[samplesProvided] = audioBuffer.Dequeue();
samplesProvided++;
}
}
while (samplesProvided < samplesToProvide) {
data[samplesProvided] = 0.0f;
samplesProvided++;
}
}
Tieni presente che puoi anche inviare testo come aggiornamenti incrementali dei contenuti durante una sessione attiva.
Stream video + audio input
Fornire contenuti video di input fornisce un contesto visivo per l'audio di input.
Live API si aspetta una sequenza di frame immagine discreti e supporta l'input di frame video a 1 frame al secondo (FPS).
Input consigliato: risoluzione nativa 768x768 a 1 FPS.
Tipi MIME supportati:
video/x-flv,video/quicktime,video/mpeg,video/mpegs,video/mpg,video/mp4,video/webm,video/wmv,video/3gpp
Lo streaming di input video e audio è un'implementazione più avanzata, quindi dai un'occhiata a un'app di esempio per scoprire come implementare questa funzionalità: Swift: in arrivo a breve. | Android - app di esempio | Web - in arrivo | Flutter - app di esempio | Unity - in arrivo
Funzionalità avanzate
I modelli Live API supportano le seguenti funzionalità avanzate per gli aggiornamenti a metà sessione:
Aggiornare le istruzioni di sistema (solo per Vertex AI Gemini API)
Aggiungere aggiornamenti incrementali dei contenuti
Puoi aggiungere aggiornamenti incrementali durante una sessione attiva. Utilizza questo parametro per inviare input di testo, stabilire il contesto della sessione o ripristinarlo.
Per contesti più lunghi, ti consigliamo di fornire un riepilogo di un singolo messaggio per liberare la finestra contestuale per le interazioni successive.
Per i contesti brevi, puoi inviare interazioni passo passo per rappresentare la sequenza esatta di eventi, come lo snippet riportato di seguito.
Swift
// Define initial turns (history/context).
let turns: [ModelContent] = [
ModelContent(role: "user", parts: [TextPart("What is the capital of France?")]),
ModelContent(role: "model", parts: [TextPart("Paris")]),
]
// Send history, keeping the conversational turn OPEN (false).
await session.sendContent(turns, turnComplete: false)
// Define the new user query.
let newTurn: [ModelContent] = [
ModelContent(role: "user", parts: [TextPart("What is the capital of Germany?")]),
]
// Send the final query, CLOSING the turn (true) to trigger the model response.
await session.sendContent(newTurn, turnComplete: true)
Kotlin
Not yet supported for Android apps - check back soon!
Java
Not yet supported for Android apps - check back soon!
Web
const turns = [{ text: "Hello from the user!" }];
await session.send(
turns,
false // turnComplete: false
);
console.log("Sent history. Waiting for next input...");
// Define the new user query.
const newTurn [{ text: "And what is the capital of Germany?" }];
// Send the final query, CLOSING the turn (true) to trigger the model response.
await session.send(
newTurn,
true // turnComplete: true
);
console.log("Sent final query. Model response expected now.");
Dart
// Define initial turns (history/context).
final List turns = [
Content(
"user",
[Part.text("What is the capital of France?")],
),
Content(
"model",
[Part.text("Paris")],
),
];
// Send history, keeping the conversational turn OPEN (false).
await session.send(
input: turns,
turnComplete: false,
);
// Define the new user query.
final List newTurn = [
Content(
"user",
[Part.text("What is the capital of Germany?")],
),
];
// Send the final query, CLOSING the turn (true) to trigger the model response.
await session.send(
input: newTurn,
turnComplete: true,
);
Unity
// Define initial turns (history/context).
List turns = new List {
new ModelContent("user", new ModelContent.TextPart("What is the capital of France?") ),
new ModelContent("model", new ModelContent.TextPart("Paris") ),
};
// Send history, keeping the conversational turn OPEN (false).
foreach (ModelContent turn in turns)
{
await session.SendAsync(
content: turn,
turnComplete: false
);
}
// Define the new user query.
ModelContent newTurn = ModelContent.Text("What is the capital of Germany?");
// Send the final query, CLOSING the turn (true) to trigger the model response.
await session.SendAsync(
content: newTurn,
turnComplete: true
);
Aggiornare le istruzioni di sistema a metà sessione
| Disponibile solo quando utilizzi Vertex AI Gemini API come provider API. |
Puoi aggiornare le istruzioni di sistema durante una sessione attiva. Utilizzalo per adattare le risposte del modello, ad esempio per cambiare la lingua della risposta o modificare il tono.
Per aggiornare le istruzioni di sistema a metà sessione, puoi inviare contenuti di testo con
il ruolo system. Le istruzioni di sistema aggiornate rimarranno in vigore per il
resto della sessione.
Swift
await session.sendContent(
[ModelContent(
role: "system",
parts: [TextPart("new system instruction")]
)],
turnComplete: false
)
Kotlin
Not yet supported for Android apps - check back soon!
Java
Not yet supported for Android apps - check back soon!
Web
Not yet supported for Web apps - check back soon!
Dart
try {
await _session.send(
input: Content(
'system',
[Part.text('new system instruction')],
),
turnComplete: false,
);
} catch (e) {
print('Failed to update system instructions: $e');
}
Unity
try
{
await session.SendAsync(
content: new ModelContent(
"system",
new ModelContent.TextPart("new system instruction")
),
turnComplete: false
);
}
catch (Exception e)
{
Debug.LogError($"Failed to update system instructions: {e.Message}");
}
Funzionalità non supportate
Funzionalità non ancora supportate da Firebase AI Logic quando utilizzi Live API, ma saranno disponibili a breve.
Gestire le interruzioni
Gestione delle sessioni, tra cui riprendere una sessione su più connessioni, estendere la durata della sessione o comprimere la finestra contestuale.
Disattivare e configurare il rilevamento dell'attività vocale (VAD)
Impostazione della risoluzione dei contenuti multimediali di input
Aggiunta di una configurazione di pensiero
Attivazione del dialogo empatico o dell'audio proattivo
Ricezione di
UsageMetadatanella risposta
Funzionalità non supportate da Firebase AI Logic quando utilizzi Live API, e al momento non sono pianificate.
Template di prompt del server
Inferenza ibrida o sul dispositivo
Monitoraggio AI nella console Firebase
Cos'altro puoi fare?
Personalizza l'implementazione utilizzando varie opzioni di configurazione, come l'aggiunta della trascrizione o l'impostazione della voce di risposta.
Potenzia l'implementazione dando al modello l'accesso a strumenti come le chiamate di funzione e il grounding con la Ricerca Google. La documentazione ufficiale per l'utilizzo degli strumenti con Live API sarà disponibile a breve.
Scopri di più su limiti e specifiche per l'utilizzo di Live API, come durata della sessione, limiti di frequenza, lingue supportate e così via.