Вы можете попросить модель Gemini проанализировать файлы документов (например, PDF-файлы и текстовые файлы), предоставленные вами либо непосредственно (в кодировке base64), либо по URL-адресу. При использовании Firebase AI Logic вы можете отправить этот запрос непосредственно из своего приложения.
Благодаря этой возможности вы можете делать, например, следующее:
- Анализ диаграмм, графиков и таблиц внутри документов.
- Извлечение информации в структурированные выходные форматы.
- Ответьте на вопросы о визуальном и текстовом содержании документов.
- Кратко изложите содержание документов
- Преобразовать содержимое документа (например, в HTML), сохраняя макет и форматирование, для использования в последующих приложениях (например, в конвейерах RAG).
Перейти к примерам кода Перейти к коду для потоковых ответов
| Дополнительные возможности работы с документами (например, PDF-файлами) можно найти в других руководствах. Создание структурированного вывода Многоходовой чат |
Прежде чем начать
Чтобы просмотреть контент и код, относящиеся к вашему поставщику API Gemini , нажмите на него. |
Если вы еще этого не сделали, пройдите руководство по началу работы , в котором описывается, как настроить проект Firebase, подключить приложение к Firebase, добавить SDK, инициализировать бэкэнд-сервис для выбранного вами поставщика API Gemini и создать экземпляр GenerativeModel .
Вы можете использовать этот общедоступный файл с MIME-типом
application/pdf( просмотреть или загрузить файл ).https://storage.googleapis.com/cloud-samples-data/generative-ai/pdf/2403.05530.pdf
Создание текста из PDF-файлов (в кодировке base64)
| Прежде чем опробовать этот пример, выполните раздел «Перед началом работы » этого руководства, чтобы настроить свой проект и приложение. В этом разделе вам также нужно будет нажать кнопку для выбранного вами поставщика API Gemini , чтобы увидеть на этой странице контент, относящийся к данному поставщику . |
Вы можете попросить модель Gemini сгенерировать текст, предоставив ей текстовые файлы и PDF-документы — указав mimeType каждого входного файла и сам файл. Требования и рекомендации к входным файлам вы найдете далее на этой странице.
Быстрый
Вы можете вызвать generateContent() для генерации текста из мультимодального ввода текста и PDF-файлов.
import FirebaseAILogic
// Initialize the Gemini Developer API backend service
let ai = FirebaseAI.firebaseAI(backend: .googleAI())
// Create a `GenerativeModel` instance with a model that supports your use case
let model = ai.generativeModel(modelName: "gemini-2.5-flash")
// Provide the PDF as `Data` with the appropriate MIME type
let pdf = try InlineDataPart(data: Data(contentsOf: pdfURL), mimeType: "application/pdf")
// Provide a text prompt to include with the PDF file
let prompt = "Summarize the important results in this report."
// To generate text output, call `generateContent` with the PDF file and text prompt
let response = try await model.generateContent(pdf, prompt)
// Print the generated text, handling the case where it might be nil
print(response.text ?? "No text in response.")
Kotlin
Вы можете вызвать generateContent() для генерации текста из мультимодального ввода текста и PDF-файлов.
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
val model = Firebase.ai(backend = GenerativeBackend.googleAI())
.generativeModel("gemini-2.5-flash")
val contentResolver = applicationContext.contentResolver
// Provide the URI for the PDF file you want to send to the model
val inputStream = contentResolver.openInputStream(pdfUri)
if (inputStream != null) { // Check if the PDF file loaded successfully
inputStream.use { stream ->
// Provide a prompt that includes the PDF file specified above and text
val prompt = content {
inlineData(
bytes = stream.readBytes(),
mimeType = "application/pdf" // Specify the appropriate PDF file MIME type
)
text("Summarize the important results in this report.")
}
// To generate text output, call `generateContent` with the prompt
val response = model.generateContent(prompt)
// Log the generated text, handling the case where it might be null
Log.d(TAG, response.text ?: "")
}
} else {
Log.e(TAG, "Error getting input stream for file.")
// Handle the error appropriately
}
Java
Вы можете вызвать generateContent() для генерации текста из мультимодального ввода текста и PDF-файлов.
ListenableFuture .
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI())
.generativeModel("gemini-2.5-flash");
// Use the GenerativeModelFutures Java compatibility layer which offers
// support for ListenableFuture and Publisher APIs
GenerativeModelFutures model = GenerativeModelFutures.from(ai);
ContentResolver resolver = getApplicationContext().getContentResolver();
// Provide the URI for the PDF file you want to send to the model
try (InputStream stream = resolver.openInputStream(pdfUri)) {
if (stream != null) {
byte[] audioBytes = stream.readAllBytes();
stream.close();
// Provide a prompt that includes the PDF file specified above and text
Content prompt = new Content.Builder()
.addInlineData(audioBytes, "application/pdf") // Specify the appropriate PDF file MIME type
.addText("Summarize the important results in this report.")
.build();
// To generate text output, call `generateContent` with the prompt
ListenableFuture<GenerateContentResponse> response = model.generateContent(prompt);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
@Override
public void onSuccess(GenerateContentResponse result) {
String text = result.getText();
Log.d(TAG, (text == null) ? "" : text);
}
@Override
public void onFailure(Throwable t) {
Log.e(TAG, "Failed to generate a response", t);
}
}, executor);
} else {
Log.e(TAG, "Error getting input stream for file.");
// Handle the error appropriately
}
} catch (IOException e) {
Log.e(TAG, "Failed to read the pdf file", e);
} catch (URISyntaxException e) {
Log.e(TAG, "Invalid pdf file", e);
}
Web
Вы можете вызвать generateContent() для генерации текста из мультимодального ввода текста и PDF-файлов.
import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend } from "firebase/ai";
// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
// ...
};
// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);
// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });
// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, { model: "gemini-2.5-flash" });
// Converts a File object to a Part object.
async function fileToGenerativePart(file) {
const base64EncodedDataPromise = new Promise((resolve) => {
const reader = new FileReader();
reader.onloadend = () => resolve(reader.result.split(','));
reader.readAsDataURL(file);
});
return {
inlineData: { data: await base64EncodedDataPromise, mimeType: file.type },
};
}
async function run() {
// Provide a text prompt to include with the PDF file
const prompt = "Summarize the important results in this report.";
// Prepare PDF file for input
const fileInputEl = document.querySelector("input[type=file]");
const pdfPart = await fileToGenerativePart(fileInputEl.files);
// To generate text output, call `generateContent` with the text and PDF file
const result = await model.generateContent([prompt, pdfPart]);
// Log the generated text, handling the case where it might be undefined
console.log(result.response.text() ?? "No text in response.");
}
run();
Dart
Вы можете вызвать generateContent() для генерации текста из мультимодального ввода текста и PDF-файлов.
import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';
// Initialize FirebaseApp
await Firebase.initializeApp(
options: DefaultFirebaseOptions.currentPlatform,
);
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
final model =
FirebaseAI.googleAI().generativeModel(model: 'gemini-2.5-flash');
// Provide a text prompt to include with the PDF file
final prompt = TextPart("Summarize the important results in this report.");
// Prepare the PDF file for input
final doc = await File('document0.pdf').readAsBytes();
// Provide the PDF file as `Data` with the appropriate PDF file MIME type
final docPart = InlineDataPart('application/pdf', doc);
// To generate text output, call `generateContent` with the text and PDF file
final response = await model.generateContent([
Content.multi([prompt,docPart])
]);
// Print the generated text
print(response.text);
Единство
Вы можете вызвать функцию GenerateContentAsync() для генерации текста из многомодального ввода текста и PDF-файлов.
using Firebase;
using Firebase.AI;
// Initialize the Gemini Developer API backend service
var ai = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI());
// Create a `GenerativeModel` instance with a model that supports your use case
var model = ai.GetGenerativeModel(modelName: "gemini-2.5-flash");
// Provide a text prompt to include with the PDF file
var prompt = ModelContent.Text("Summarize the important results in this report.");
// Provide the PDF file as `data` with the appropriate PDF file MIME type
var doc = ModelContent.InlineData("application/pdf",
System.IO.File.ReadAllBytes(System.IO.Path.Combine(
UnityEngine.Application.streamingAssetsPath, "document0.pdf")));
// To generate text output, call `GenerateContentAsync` with the text and PDF file
var response = await model.GenerateContentAsync(new [] { prompt, doc });
// Print the generated text
UnityEngine.Debug.Log(response.Text ?? "No text in response.");
Узнайте, как выбрать модель.подходит для вашего сценария использования и приложения.
Трансляция ответа
| Прежде чем опробовать этот пример, выполните раздел «Перед началом работы » этого руководства, чтобы настроить свой проект и приложение. В этом разделе вам также нужно будет нажать кнопку для выбранного вами поставщика API Gemini , чтобы увидеть на этой странице контент, относящийся к данному поставщику . |
Для ускорения взаимодействия можно не ждать полного результата генерации модели, а использовать потоковую обработку для частичного получения результатов. Для потоковой передачи ответа вызовите generateContentStream .
Быстрый
Вы можете вызвать generateContentStream() для потоковой передачи сгенерированного текста из многомодального ввода текста и PDF-файлов.
import FirebaseAILogic
// Initialize the Gemini Developer API backend service
let ai = FirebaseAI.firebaseAI(backend: .googleAI())
// Create a `GenerativeModel` instance with a model that supports your use case
let model = ai.generativeModel(modelName: "gemini-2.5-flash")
// Provide the PDF as `Data` with the appropriate MIME type
let pdf = try InlineDataPart(data: Data(contentsOf: pdfURL), mimeType: "application/pdf")
// Provide a text prompt to include with the PDF file
let prompt = "Summarize the important results in this report."
// To stream generated text output, call `generateContentStream` with the PDF file and text prompt
let contentStream = try model.generateContentStream(pdf, prompt)
// Print the generated text, handling the case where it might be nil
for try await chunk in contentStream {
if let text = chunk.text {
print(text)
}
}
Kotlin
Вы можете вызвать generateContentStream() для потоковой передачи сгенерированного текста из многомодального ввода текста и PDF-файлов.
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
val model = Firebase.ai(backend = GenerativeBackend.googleAI())
.generativeModel("gemini-2.5-flash")
val contentResolver = applicationContext.contentResolver
// Provide the URI for the PDF you want to send to the model
val inputStream = contentResolver.openInputStream(pdfUri)
if (inputStream != null) { // Check if the PDF file loaded successfully
inputStream.use { stream ->
// Provide a prompt that includes the PDF file specified above and text
val prompt = content {
inlineData(
bytes = stream.readBytes(),
mimeType = "application/pdf" // Specify the appropriate PDF file MIME type
)
text("Summarize the important results in this report.")
}
// To stream generated text output, call `generateContentStream` with the prompt
var fullResponse = ""
model.generateContentStream(prompt).collect { chunk ->
// Log the generated text, handling the case where it might be null
val chunkText = chunk.text ?: ""
Log.d(TAG, chunkText)
fullResponse += chunkText
}
}
} else {
Log.e(TAG, "Error getting input stream for file.")
// Handle the error appropriately
}
Java
Вы можете вызвать generateContentStream() для потоковой передачи сгенерированного текста из многомодального ввода текста и PDF-файлов.
Publisher из библиотеки Reactive Streams .
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI())
.generativeModel("gemini-2.5-flash");
// Use the GenerativeModelFutures Java compatibility layer which offers
// support for ListenableFuture and Publisher APIs
GenerativeModelFutures model = GenerativeModelFutures.from(ai);
ContentResolver resolver = getApplicationContext().getContentResolver();
// Provide the URI for the PDF file you want to send to the model
try (InputStream stream = resolver.openInputStream(pdfUri)) {
if (stream != null) {
byte[] audioBytes = stream.readAllBytes();
stream.close();
// Provide a prompt that includes the PDF file specified above and text
Content prompt = new Content.Builder()
.addInlineData(audioBytes, "application/pdf") // Specify the appropriate PDF file MIME type
.addText("Summarize the important results in this report.")
.build();
// To stream generated text output, call `generateContentStream` with the prompt
Publisher<GenerateContentResponse> streamingResponse =
model.generateContentStream(prompt);
StringBuilder fullResponse = new StringBuilder();
streamingResponse.subscribe(new Subscriber<GenerateContentResponse>() {
@Override
public void onNext(GenerateContentResponse generateContentResponse) {
String chunk = generateContentResponse.getText();
String text = (chunk == null) ? "" : chunk;
Log.d(TAG, text);
fullResponse.append(text);
}
@Override
public void onComplete() {
Log.d(TAG, fullResponse.toString());
}
@Override
public void onError(Throwable t) {
Log.e(TAG, "Failed to generate a response", t);
}
@Override
public void onSubscribe(Subscription s) {
}
});
} else {
Log.e(TAG, "Error getting input stream for file.");
// Handle the error appropriately
}
} catch (IOException e) {
Log.e(TAG, "Failed to read the pdf file", e);
} catch (URISyntaxException e) {
Log.e(TAG, "Invalid pdf file", e);
}
Web
Вы можете вызвать generateContentStream() для потоковой передачи сгенерированного текста из многомодального ввода текста и PDF-файлов.
import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend } from "firebase/ai";
// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
// ...
};
// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);
// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });
// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, { model: "gemini-2.5-flash" });
// Converts a File object to a Part object.
async function fileToGenerativePart(file) {
const base64EncodedDataPromise = new Promise((resolve) => {
const reader = new FileReader();
reader.onloadend = () => resolve(reader.result.split(','));
reader.readAsDataURL(file);
});
return {
inlineData: { data: await base64EncodedDataPromise, mimeType: file.type },
};
}
async function run() {
// Provide a text prompt to include with the PDF file
const prompt = "Summarize the important results in this report.";
// Prepare PDF file for input
const fileInputEl = document.querySelector("input[type=file]");
const pdfPart = await fileToGenerativePart(fileInputEl.files);
// To stream generated text output, call `generateContentStream` with the text and PDF file
const result = await model.generateContentStream([prompt, pdfPart]);
// Log the generated text
for await (const chunk of result.stream) {
const chunkText = chunk.text();
console.log(chunkText);
}
}
run();
Dart
Вы можете вызвать generateContentStream() для потоковой передачи сгенерированного текста из многомодального ввода текста и PDF-файлов.
import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';
// Initialize FirebaseApp
await Firebase.initializeApp(
options: DefaultFirebaseOptions.currentPlatform,
);
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
final model =
FirebaseAI.googleAI().generativeModel(model: 'gemini-2.5-flash');
// Provide a text prompt to include with the PDF file
final prompt = TextPart("Summarize the important results in this report.");
// Prepare the PDF file for input
final doc = await File('document0.pdf').readAsBytes();
// Provide the PDF file as `Data` with the appropriate PDF file MIME type
final docPart = InlineDataPart('application/pdf', doc);
// To generate text output, call `generateContentStream` with the text and PDF file
final response = await model.generateContentStream([
Content.multi([prompt,docPart])
]);
// Print the generated text
await for (final chunk in response) {
print(chunk.text);
}
Единство
Вы можете вызвать функцию GenerateContentStreamAsync() для потоковой передачи сгенерированного текста из многомодального ввода текста и PDF-файлов.
i-2.5-flash");
using Firebase;
using Firebase.AI;
// Initialize the Gemini Developer API backend service
var ai = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI());
// Create a `GenerativeModel` instance with a model that supports your use case
var model = ai.GetGenerativeModel(modelName: "gemini-2.5-flash");
// Provide a text prompt to include with the PDF file
var prompt = ModelContent.Text("Summarize the important results in this report.");
// Provide the PDF file as `data` with the appropriate PDF file MIME type
var doc = ModelContent.InlineData("application/pdf",
System.IO.File.ReadAllBytes(System.IO.Path.Combine(
UnityEngine.Application.streamingAssetsPath, "document0.pdf")));
// To stream generated text output, call `GenerateContentStreamAsync` with the text and PDF file
var responseStream = model.GenerateContentStreamAsync(new [] { prompt, doc });
// Print the generated text
await foreach (var response in responseStream) {
if (!string.IsNullOrWhiteSpace(response.Text)) {
UnityEngine.Debug.Log(response.Text);
}
}
Узнайте, как выбрать модель.подходит для вашего сценария использования и приложения.
Требования и рекомендации к входным документам
Обратите внимание, что файл, предоставленный в виде встроенных данных, кодируется в base64 во время передачи, что увеличивает размер запроса. В случае слишком большого размера запроса вы получите ошибку HTTP 413.
Подробную информацию о следующих параметрах можно найти на странице «Поддерживаемые входные файлы и требования»:
- Различные варианты предоставления файла в запросе (либо непосредственно в запросе, либо с использованием URL-адреса или URI файла).
- Требования и лучшие практики для работы с документами.
Поддерживаемые MIME-типы документов
Мультимодальные модели Gemini поддерживают следующие MIME-типы документов:
- PDF -
application/pdf - Текст -
text/plain
Ограничения на один запрос
PDF-файлы обрабатываются как изображения, поэтому одна страница PDF-файла рассматривается как одно изображение. Количество страниц, разрешенных в запросе, ограничено количеством изображений, которые могут поддерживать мультимодальные модели Gemini .
- Максимальное количество файлов на один запрос: 3000 файлов.
- Максимальное количество страниц в файле: 1000 страниц в файле.
- Максимальный размер файла: 50 МБ.
Что еще можно сделать?
- Научитесь подсчитывать токены, прежде чем отправлять модели длинные запросы.
- Настройте Cloud Storage for Firebase , чтобы включать большие файлы в ваши многомодальные запросы и иметь более управляемое решение для предоставления файлов в подсказках. Файлы могут включать изображения, PDF-файлы, видео и аудио.
- Начните думать о подготовке к производству (см. контрольный список для производства ), включая:
- Настройка Firebase App Check для защиты API Gemini от неправомерного использования неавторизованными клиентами.
- Интеграция Firebase Remote Config для обновления значений в вашем приложении (например, имени модели) без выпуска новой версии приложения.
Попробуйте другие возможности.
- Создавайте многоэтапные диалоги (чат) .
- Генерация текста на основе текстовых подсказок .
- Генерируйте структурированный вывод (например, в формате JSON) как из текстовых, так и из мультимодальных запросов.
- Создавайте изображения на основе текстовых подсказок ( Gemini или Imagen ).
- Используйте инструменты (например, вызов функций и привязку к Google Search ), чтобы связать модель Gemini с другими частями вашего приложения, а также с внешними системами и информацией.
Узнайте, как управлять генерацией контента.
- Разберитесь в разработке подсказок для заданий , включая лучшие практики, стратегии и примеры подсказок.
- Настройте параметры модели , такие как температура и максимальное количество выходных токенов (для Gemini ) или соотношение сторон и генерация людей (для Imagen ).
- Используйте настройки безопасности , чтобы скорректировать вероятность получения ответов, которые могут быть сочтены вредными.
Узнайте больше о поддерживаемых моделях
Узнайте о моделях, доступных для различных вариантов использования , а также об их квотах и ценах .Оставьте отзыв о вашем опыте использования Firebase AI Logic.