Nesta página, descrevemos os recursos do Live API quando você o usa via Firebase AI Logic, incluindo:
Modalidades de entrada compatíveis, incluindo:
Recursos avançados, incluindo atualizações no meio da sessão:
Listas de recursos não compatíveis, muitos dos quais serão lançados em breve.
Você também pode personalizar sua implementação usando várias opções de configuração, como adicionar transcrição ou definir a voz da resposta.
Modalidades de entrada
Nesta seção, descrevemos como enviar vários tipos de entradas para um modelo Live API. Os modelos de áudio nativos sempre exigem entrada de áudio (além de modalidades adicionais opcionais de entrada de texto ou vídeo) e sempre respondem com saída de áudio.
Transmitir entrada de áudio
|
Clique no seu provedor de Gemini API para conferir o conteúdo e o código específicos do provedor nesta página. |
O recurso mais comum do Live API é o streaming de áudio bidirecional, ou seja, o streaming em tempo real da entrada e da saída de áudio.
O Live API é compatível com os seguintes formatos de áudio:
- Formato de áudio de entrada:áudio PCM bruto de 16 bits a 16 kHz little-endian
Formato de áudio de saída:áudio PCM bruto de 16 bits a 24 kHz little-endian
Tipos MIME aceitos:
audio/x-aac,audio/flac,audio/mp3,audio/m4a,audio/mpeg,audio/mpga,audio/mp4,audio/ogg,audio/pcm,audio/wav,audio/webm
Para transmitir a taxa de amostragem do áudio de entrada, defina o tipo MIME de cada
Blob que contém áudio como um valor como audio/pcm;rate=16000.
Swift
Para usar o Live API, crie uma
instância LiveModel
e defina a
modalidade de resposta
como audio.
import FirebaseAILogic
// Initialize the Gemini Developer API backend service
// Create a `liveModel` instance with a model that supports the Live API
let liveModel = FirebaseAI.firebaseAI(backend: .googleAI()).liveModel(
modelName: "gemini-2.5-flash-native-audio-preview-12-2025",
// Configure the model to respond with audio
generationConfig: LiveGenerationConfig(
responseModalities: [.audio]
)
)
do {
let session = try await liveModel.connect()
// Load the audio file, or tap a microphone
guard let audioFile = NSDataAsset(name: "audio.pcm") else {
fatalError("Failed to load audio file")
}
// Provide the audio data
await session.sendAudioRealtime(audioFile.data)
var outputText = ""
for try await message in session.responses {
if case let .content(content) = message.payload {
content.modelTurn?.parts.forEach { part in
if let part = part as? InlineDataPart, part.mimeType.starts(with: "audio/pcm") {
// Handle 16bit pcm audio data at 24khz
playAudio(part.data)
}
}
// Optional: if you don't require to send more requests.
if content.isTurnComplete {
await session.close()
}
}
}
} catch {
fatalError(error.localizedDescription)
}
Kotlin
Para usar o Live API, crie uma
instância LiveModel
e defina a
modalidade de resposta
como AUDIO.
// Initialize the Gemini Developer API backend service
// Create a `liveModel` instance with a model that supports the Live API
val liveModel = Firebase.ai(backend = GenerativeBackend.googleAI()).liveModel(
modelName = "gemini-2.5-flash-native-audio-preview-12-2025",
// Configure the model to respond with audio
generationConfig = liveGenerationConfig {
responseModality = ResponseModality.AUDIO
}
)
val session = liveModel.connect()
// This is the recommended approach.
// However, you can create your own recorder and handle the stream.
session.startAudioConversation()
Java
Para usar o Live API, crie uma
instância LiveModel
e defina a
modalidade de resposta
como AUDIO.
ExecutorService executor = Executors.newFixedThreadPool(1);
// Initialize the Gemini Developer API backend service
// Create a `liveModel` instance with a model that supports the Live API
LiveGenerativeModel lm = FirebaseAI.getInstance(GenerativeBackend.googleAI()).liveModel(
"gemini-2.5-flash-native-audio-preview-12-2025",
// Configure the model to respond with audio
new LiveGenerationConfig.Builder()
.setResponseModality(ResponseModality.AUDIO)
.build()
);
LiveModelFutures liveModel = LiveModelFutures.from(lm);
ListenableFuture<LiveSession> sessionFuture = liveModel.connect();
Futures.addCallback(sessionFuture, new FutureCallback<LiveSession>() {
@Override
public void onSuccess(LiveSession ses) {
LiveSessionFutures session = LiveSessionFutures.from(ses);
session.startAudioConversation();
}
@Override
public void onFailure(Throwable t) {
// Handle exceptions
}
}, executor);
Web
Para usar o Live API, crie uma
instância LiveGenerativeModel
e defina a
modalidade de resposta
como AUDIO.
import { initializeApp } from "firebase/app";
import { getAI, getLiveGenerativeModel, GoogleAIBackend, ResponseModality } from "firebase/ai";
// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
// ...
};
// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);
// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });
// Create a `LiveGenerativeModel` instance with a model that supports the Live API
const liveModel = getLiveGenerativeModel(ai, {
model: "gemini-2.5-flash-native-audio-preview-12-2025",
// Configure the model to respond with audio
generationConfig: {
responseModalities: [ResponseModality.AUDIO],
},
});
const session = await liveModel.connect();
// Start the audio conversation
const audioConversationController = await startAudioConversation(session);
// ... Later, to stop the audio conversation
// await audioConversationController.stop()
Dart
Para usar o Live API, crie uma instância de
LiveGenerativeModel
e defina a
modalidade de resposta
como audio.
import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';
import 'package:your_audio_recorder_package/your_audio_recorder_package.dart';
late LiveModelSession _session;
final _audioRecorder = YourAudioRecorder();
await Firebase.initializeApp(
options: DefaultFirebaseOptions.currentPlatform,
);
// Initialize the Gemini Developer API backend service
// Create a `liveGenerativeModel` instance with a model that supports the Live API
final liveModel = FirebaseAI.googleAI().liveGenerativeModel(
model: 'gemini-2.5-flash-native-audio-preview-12-2025',
// Configure the model to respond with audio
liveGenerationConfig: LiveGenerationConfig(
responseModalities: [ResponseModalities.audio],
),
);
_session = await liveModel.connect();
final audioRecordStream = _audioRecorder.startRecordingStream();
// Map the Uint8List stream to InlineDataPart stream
final mediaChunkStream = audioRecordStream.map((data) {
return InlineDataPart('audio/pcm', data);
});
await _session.startMediaStream(mediaChunkStream);
// In a separate thread, receive the audio response from the model
await for (final message in _session.receive()) {
// Process the received message
}
Unity
Para usar o Live API, crie uma
instância LiveModel
e defina a
modalidade de resposta
como Audio.
using Firebase;
using Firebase.AI;
async Task SendTextReceiveAudio() {
// Initialize the Gemini Developer API backend service
// Create a `LiveModel` instance with a model that supports the Live API
var liveModel = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI()).GetLiveModel(
modelName: "gemini-2.5-flash-native-audio-preview-12-2025",
// Configure the model to respond with audio
liveGenerationConfig: new LiveGenerationConfig(
responseModalities: new[] { ResponseModality.Audio })
);
LiveSession session = await liveModel.ConnectAsync();
// Start a coroutine to send audio from the Microphone
var recordingCoroutine = StartCoroutine(SendAudio(session));
// Start receiving the response
await ReceiveAudio(session);
}
IEnumerator SendAudio(LiveSession liveSession) {
string microphoneDeviceName = null;
int recordingFrequency = 16000;
int recordingBufferSeconds = 2;
var recordingClip = Microphone.Start(microphoneDeviceName, true,
recordingBufferSeconds, recordingFrequency);
int lastSamplePosition = 0;
while (true) {
if (!Microphone.IsRecording(microphoneDeviceName)) {
yield break;
}
int currentSamplePosition = Microphone.GetPosition(microphoneDeviceName);
if (currentSamplePosition != lastSamplePosition) {
// The Microphone uses a circular buffer, so we need to check if the
// current position wrapped around to the beginning, and handle it
// accordingly.
int sampleCount;
if (currentSamplePosition > lastSamplePosition) {
sampleCount = currentSamplePosition - lastSamplePosition;
} else {
sampleCount = recordingClip.samples - lastSamplePosition + currentSamplePosition;
}
if (sampleCount > 0) {
// Get the audio chunk
float[] samples = new float[sampleCount];
recordingClip.GetData(samples, lastSamplePosition);
// Send the data, discarding the resulting Task to avoid the warning
_ = liveSession.SendAudioAsync(samples);
lastSamplePosition = currentSamplePosition;
}
}
// Wait for a short delay before reading the next sample from the Microphone
const float MicrophoneReadDelay = 0.5f;
yield return new WaitForSeconds(MicrophoneReadDelay);
}
}
Queue audioBuffer = new();
async Task ReceiveAudio(LiveSession liveSession) {
int sampleRate = 24000;
int channelCount = 1;
// Create a looping AudioClip to fill with the received audio data
int bufferSamples = (int)(sampleRate * channelCount);
AudioClip clip = AudioClip.Create("StreamingPCM", bufferSamples, channelCount,
sampleRate, true, OnAudioRead);
// Attach the clip to an AudioSource and start playing it
AudioSource audioSource = GetComponent();
audioSource.clip = clip;
audioSource.loop = true;
audioSource.Play();
// Start receiving the response
await foreach (var message in liveSession.ReceiveAsync()) {
// Process the received message
foreach (float[] pcmData in message.AudioAsFloat) {
lock (audioBuffer) {
foreach (float sample in pcmData) {
audioBuffer.Enqueue(sample);
}
}
}
}
}
// This method is called by the AudioClip to load audio data.
private void OnAudioRead(float[] data) {
int samplesToProvide = data.Length;
int samplesProvided = 0;
lock(audioBuffer) {
while (samplesProvided < samplesToProvide && audioBuffer.Count > 0) {
data[samplesProvided] = audioBuffer.Dequeue();
samplesProvided++;
}
}
while (samplesProvided < samplesToProvide) {
data[samplesProvided] = 0.0f;
samplesProvided++;
}
}
Transmissão de texto + entrada de áudio
|
Clique no seu provedor de Gemini API para conferir o conteúdo e o código específicos do provedor nesta página. |
Se necessário, você pode enviar uma entrada de texto junto com a entrada de áudio e receber uma saída de áudio transmitida.
Swift
Para usar o Live API, crie uma
instância LiveModel
e defina a
modalidade de resposta
como audio.
import FirebaseAILogic
// Initialize the Gemini Developer API backend service
// Create a `liveModel` instance with a model that supports the Live API
let liveModel = FirebaseAI.firebaseAI(backend: .googleAI()).liveModel(
modelName: "gemini-2.5-flash-native-audio-preview-12-2025",
// Configure the model to respond with audio
generationConfig: LiveGenerationConfig(
responseModalities: [.audio]
)
)
do {
let session = try await liveModel.connect()
// Provide a text prompt
let text = "tell a short story"
await session.sendTextRealtime(text)
var outputText = ""
for try await message in session.responses {
if case let .content(content) = message.payload {
content.modelTurn?.parts.forEach { part in
if let part = part as? InlineDataPart, part.mimeType.starts(with: "audio/pcm") {
// Handle 16bit pcm audio data at 24khz
playAudio(part.data)
}
}
// Optional: if you don't require to send more requests.
if content.isTurnComplete {
await session.close()
}
}
}
} catch {
fatalError(error.localizedDescription)
}
Kotlin
Para usar o Live API, crie uma
instância LiveModel
e defina a
modalidade de resposta
como AUDIO.
// Initialize the Gemini Developer API backend service
// Create a `liveModel` instance with a model that supports the Live API
val liveModel = Firebase.ai(backend = GenerativeBackend.googleAI()).liveModel(
modelName = "gemini-2.5-flash-native-audio-preview-12-2025",
// Configure the model to respond with audio
generationConfig = liveGenerationConfig {
responseModality = ResponseModality.AUDIO
}
)
val session = liveModel.connect()
// Provide a text prompt
val text = "tell a short story"
session.send(text)
session.receive().collect {
if(it.turnComplete) {
// Optional: if you don't require to send more requests.
session.stopReceiving();
}
// Handle 16bit pcm audio data at 24khz
playAudio(it.data)
}
Java
Para usar o Live API, crie uma instância de
LiveModel
e defina a
modalidade de resposta
como AUDIO.
ExecutorService executor = Executors.newFixedThreadPool(1);
// Initialize the Gemini Developer API backend service
// Create a `liveModel` instance with a model that supports the Live API
LiveGenerativeModel lm = FirebaseAI.getInstance(GenerativeBackend.googleAI()).liveModel(
"gemini-2.5-flash-native-audio-preview-12-2025",
// Configure the model to respond with text
new LiveGenerationConfig.Builder()
.setResponseModality(ResponseModality.AUDIO)
.build()
);
LiveModelFutures model = LiveModelFutures.from(lm);
ListenableFuture<LiveSession> sessionFuture = model.connect();
class LiveContentResponseSubscriber implements Subscriber<LiveContentResponse> {
@Override
public void onSubscribe(Subscription s) {
s.request(Long.MAX_VALUE); // Request an unlimited number of items
}
@Override
public void onNext(LiveContentResponse liveContentResponse) {
// Handle 16bit pcm audio data at 24khz
liveContentResponse.getData();
}
@Override
public void onError(Throwable t) {
System.err.println("Error: " + t.getMessage());
}
@Override
public void onComplete() {
System.out.println("Done receiving messages!");
}
}
Futures.addCallback(sessionFuture, new FutureCallback<LiveSession>() {
@Override
public void onSuccess(LiveSession ses) {
LiveSessionFutures session = LiveSessionFutures.from(ses);
// Provide a text prompt
String text = "tell me a short story?";
session.send(text);
Publisher<LiveContentResponse> publisher = session.receive();
publisher.subscribe(new LiveContentResponseSubscriber());
}
@Override
public void onFailure(Throwable t) {
// Handle exceptions
}
}, executor);
Web
Para usar o Live API, crie uma instância de
LiveGenerativeModel
e defina a
modalidade de resposta
como AUDIO.
import { initializeApp } from "firebase/app";
import { getAI, getLiveGenerativeModel, GoogleAIBackend, ResponseModality } from "firebase/ai";
// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
// ...
};
// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);
// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });
// Create a `LiveGenerativeModel` instance with a model that supports the Live API
const liveModel = getLiveGenerativeModel(ai, {
model: "gemini-2.5-flash-native-audio-preview-12-2025",
// Configure the model to respond with audio
generationConfig: {
responseModalities: [ResponseModality.AUDIO],
},
});
const session = await liveModel.connect();
// Provide a text prompt
const prompt = "tell a short story";
session.send(prompt);
// Handle the model's audio output
const messages = session.receive();
for await (const message of messages) {
switch (message.type) {
case "serverContent":
if (message.turnComplete) {
// TODO(developer): Handle turn completion
} else if (message.interrupted) {
// TODO(developer): Handle the interruption
break;
} else if (message.modelTurn) {
const parts = message.modelTurn?.parts;
parts?.forEach((part) => {
if (part.inlineData) {
// TODO(developer): Play the audio chunk
}
});
}
break;
case "toolCall":
// Ignore
case "toolCallCancellation":
// Ignore
}
}
Dart
Para usar o Live API, crie uma instância de
LiveGenerativeModel
e defina a
modalidade de resposta
como audio.
import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';
import 'dart:async';
import 'dart:typed_data';
late LiveModelSession _session;
Future<Stream<Uint8List>> textToAudio(String textPrompt) async {
WidgetsFlutterBinding.ensureInitialized();
await Firebase.initializeApp(
options: DefaultFirebaseOptions.currentPlatform,
);
// Initialize the Gemini Developer API backend service
// Create a `liveGenerativeModel` instance with a model that supports the Live API
final liveModel = FirebaseAI.googleAI().liveGenerativeModel(
model: 'gemini-2.5-flash-native-audio-preview-12-2025',
// Configure the model to respond with audio
liveGenerationConfig: LiveGenerationConfig(
responseModalities: [ResponseModalities.audio],
),
);
_session = await liveModel.connect();
final prompt = Content.text(textPrompt);
await _session.send(input: prompt);
return _session.receive().asyncMap((response) async {
if (response is LiveServerContent && response.modelTurn?.parts != null) {
for (final part in response.modelTurn!.parts) {
if (part is InlineDataPart) {
return part.bytes;
}
}
}
throw Exception('Audio data not found');
});
}
Future<void> main() async {
try {
final audioStream = await textToAudio('Convert this text to audio.');
await for (final audioData in audioStream) {
// Process the audio data (e.g., play it using an audio player package)
print('Received audio data: ${audioData.length} bytes');
// Example using flutter_sound (replace with your chosen package):
// await _flutterSoundPlayer.startPlayer(fromDataBuffer: audioData);
}
} catch (e) {
print('Error: $e');
}
}
Unity
Para usar o Live API, crie uma
instância LiveModel
e defina a
modalidade de resposta
como Audio.
using Firebase;
using Firebase.AI;
async Task SendTextReceiveAudio() {
// Initialize the Gemini Developer API backend service
// Create a `LiveModel` instance with a model that supports the Live API
var liveModel = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI()).GetLiveModel(
modelName: "gemini-2.5-flash-native-audio-preview-12-2025",
// Configure the model to respond with audio
liveGenerationConfig: new LiveGenerationConfig(
responseModalities: new[] { ResponseModality.Audio })
);
LiveSession session = await liveModel.ConnectAsync();
// Provide a text prompt
var prompt = ModelContent.Text("Convert this text to audio.");
await session.SendAsync(content: prompt, turnComplete: true);
// Start receiving the response
await ReceiveAudio(session);
}
Queue<float> audioBuffer = new();
async Task ReceiveAudio(LiveSession session) {
int sampleRate = 24000;
int channelCount = 1;
// Create a looping AudioClip to fill with the received audio data
int bufferSamples = (int)(sampleRate * channelCount);
AudioClip clip = AudioClip.Create("StreamingPCM", bufferSamples, channelCount,
sampleRate, true, OnAudioRead);
// Attach the clip to an AudioSource and start playing it
AudioSource audioSource = GetComponent<AudioSource>();
audioSource.clip = clip;
audioSource.loop = true;
audioSource.Play();
// Start receiving the response
await foreach (var message in session.ReceiveAsync()) {
// Process the received message
foreach (float[] pcmData in message.AudioAsFloat) {
lock (audioBuffer) {
foreach (float sample in pcmData) {
audioBuffer.Enqueue(sample);
}
}
}
}
}
// This method is called by the AudioClip to load audio data.
private void OnAudioRead(float[] data) {
int samplesToProvide = data.Length;
int samplesProvided = 0;
lock(audioBuffer) {
while (samplesProvided < samplesToProvide && audioBuffer.Count > 0) {
data[samplesProvided] = audioBuffer.Dequeue();
samplesProvided++;
}
}
while (samplesProvided < samplesToProvide) {
data[samplesProvided] = 0.0f;
samplesProvided++;
}
}
Também é possível enviar texto como atualizações incrementais de conteúdo durante uma sessão ativa.
Fazer streaming de vídeo + entrada de áudio
Fornecer conteúdo de vídeo de entrada oferece contexto visual para o áudio de entrada.
O Live API espera uma sequência de frames de imagem discretos e aceita entrada de frames de vídeo a 1 frame por segundo (FPS).
Entrada recomendada: resolução nativa de 768 x 768 a 1 FPS.
Tipos MIME aceitos:
video/x-flv,video/quicktime,video/mpeg,video/mpegs,video/mpg,video/mp4,video/webm,video/wmv,video/3gpp
O streaming de vídeo e a entrada de áudio são uma implementação mais avançada. Confira um app de exemplo para saber como implementar essa capacidade: Swift (em breve). | Android: app de exemplo | Web: em breve! | Flutter: app de exemplo | Unity: em breve!
Recursos avançados
Os modelos Live API oferecem suporte aos seguintes recursos avançados para atualizações no meio da sessão:
Atualizar instruções do sistema (somente para Vertex AI Gemini API)
Adicionar atualizações incrementais de conteúdo
É possível adicionar atualizações incrementais durante uma sessão ativa. Use isso para enviar entrada de texto, estabelecer ou restaurar o contexto da sessão.
Para contextos mais longos, recomendamos fornecer um único resumo da mensagem para liberar a janela de contexto para interações subsequentes.
Para contextos curtos, é possível enviar interações de curva a curva para representar a sequência exata de eventos, como o snippet abaixo.
Swift
// Define initial turns (history/context).
let turns: [ModelContent] = [
ModelContent(role: "user", parts: [TextPart("What is the capital of France?")]),
ModelContent(role: "model", parts: [TextPart("Paris")]),
]
// Send history, keeping the conversational turn OPEN (false).
await session.sendContent(turns, turnComplete: false)
// Define the new user query.
let newTurn: [ModelContent] = [
ModelContent(role: "user", parts: [TextPart("What is the capital of Germany?")]),
]
// Send the final query, CLOSING the turn (true) to trigger the model response.
await session.sendContent(newTurn, turnComplete: true)
Kotlin
Not yet supported for Android apps - check back soon!
Java
Not yet supported for Android apps - check back soon!
Web
const turns = [{ text: "Hello from the user!" }];
await session.send(
turns,
false // turnComplete: false
);
console.log("Sent history. Waiting for next input...");
// Define the new user query.
const newTurn [{ text: "And what is the capital of Germany?" }];
// Send the final query, CLOSING the turn (true) to trigger the model response.
await session.send(
newTurn,
true // turnComplete: true
);
console.log("Sent final query. Model response expected now.");
Dart
// Define initial turns (history/context).
final List turns = [
Content(
"user",
[Part.text("What is the capital of France?")],
),
Content(
"model",
[Part.text("Paris")],
),
];
// Send history, keeping the conversational turn OPEN (false).
await session.send(
input: turns,
turnComplete: false,
);
// Define the new user query.
final List newTurn = [
Content(
"user",
[Part.text("What is the capital of Germany?")],
),
];
// Send the final query, CLOSING the turn (true) to trigger the model response.
await session.send(
input: newTurn,
turnComplete: true,
);
Unity
// Define initial turns (history/context).
List turns = new List {
new ModelContent("user", new ModelContent.TextPart("What is the capital of France?") ),
new ModelContent("model", new ModelContent.TextPart("Paris") ),
};
// Send history, keeping the conversational turn OPEN (false).
foreach (ModelContent turn in turns)
{
await session.SendAsync(
content: turn,
turnComplete: false
);
}
// Define the new user query.
ModelContent newTurn = ModelContent.Text("What is the capital of Germany?");
// Send the final query, CLOSING the turn (true) to trigger the model response.
await session.SendAsync(
content: newTurn,
turnComplete: true
);
Atualizar instruções do sistema no meio da sessão
| Disponível apenas quando você usa o Vertex AI Gemini API como seu provedor de API. |
É possível atualizar as instruções do sistema durante uma sessão ativa. Use isso para adaptar as respostas do modelo, por exemplo, para mudar o idioma ou o tom.
Para atualizar as instruções do sistema no meio da sessão, envie conteúdo de texto com a função system. As instruções atualizadas vão permanecer em vigor durante o restante da sessão.
Swift
await session.sendContent(
[ModelContent(
role: "system",
parts: [TextPart("new system instruction")]
)],
turnComplete: false
)
Kotlin
Not yet supported for Android apps - check back soon!
Java
Not yet supported for Android apps - check back soon!
Web
Not yet supported for Web apps - check back soon!
Dart
try {
await _session.send(
input: Content(
'system',
[Part.text('new system instruction')],
),
turnComplete: false,
);
} catch (e) {
print('Failed to update system instructions: $e');
}
Unity
try
{
await session.SendAsync(
content: new ModelContent(
"system",
new ModelContent.TextPart("new system instruction")
),
turnComplete: false
);
}
catch (Exception e)
{
Debug.LogError($"Failed to update system instructions: {e.Message}");
}
Recursos não compatíveis
Recursos ainda não compatíveis com Firebase AI Logic ao usar o Live API, mas eles serão lançados em breve!
Como lidar com interrupções
Gerenciamento de sessão, incluindo retomar uma sessão em várias conexões, aumentar a duração da sessão ou compactar a janela de contexto.
Desativar e configurar a detecção de atividade de voz (VAD)
Como definir a resolução da mídia de entrada
Adicionar uma configuração de pensamento
Ativar o diálogo afetivo ou o áudio proativo
Receber
UsageMetadatana resposta
Recursos não compatíveis com Firebase AI Logic ao usar o Live API, e que não estão planejados no momento.
Modelos de comandos do servidor
Inferência híbrida ou no dispositivo
Monitoramento de IA no console do Firebase
O que mais você sabe fazer?
Personalize sua implementação usando várias opções de configuração, como adicionar transcrição ou definir a voz da resposta.
Turbine sua implementação dando ao modelo acesso a ferramentas, como chamadas de função e embasamento com a Pesquisa Google. A documentação oficial sobre como usar ferramentas com o Live API será lançada em breve.
Saiba mais sobre os limites e especificações para usar o Live API, como duração da sessão, limites de taxa, idiomas compatíveis etc.