Puoi chiedere a un modello Gemini di generare testo da un prompt di solo testo o da un prompt multimodale. Quando utilizzi Firebase AI Logic, puoi effettuare questa richiesta direttamente dalla tua app.
I prompt multimodali possono includere più tipi di input (come testo insieme a immagini, PDF, file di testo normale, audio e video).
Questa guida mostra come generare testo da un prompt solo testo e da un prompt multimodale di base che include un file.
Vai agli esempi di codice per l'input solo testo Vai agli esempi di codice per l'input multimodale
Consulta altre guide per ulteriori opzioni per lavorare con il testo Generare output strutturato Chat multi-turn Streaming bidirezionale Generare testo sul dispositivo Generare immagini da testo |
Prima di iniziare
Fai clic sul tuo fornitore Gemini API per visualizzare i contenuti e il codice specifici del fornitore in questa pagina. |
Se non l'hai ancora fatto, completa la guida introduttiva, che descrive come configurare il progetto Firebase, connettere l'app a Firebase, aggiungere l'SDK, inizializzare il servizio di backend per il provider Gemini API scelto e creare un'istanza GenerativeModel
.
Per testare e perfezionare i prompt e persino ottenere uno snippet di codice generato, ti consigliamo di utilizzare Google AI Studio.
Generare testo da input di solo testo
Prima di provare questo esempio, completa la sezione
Prima di iniziare di questa guida
per configurare il progetto e l'app. In questa sezione, fai clic anche su un pulsante per il provider Gemini API che hai scelto, in modo da visualizzare i contenuti specifici del provider in questa pagina. |
Puoi chiedere a un modello Gemini di generare testo fornendo un input solo testuale.
Puoi chiamare
generateContent()
per generare testo da un input di solo testo.
import FirebaseAI
// Initialize the Gemini Developer API backend service
let ai = FirebaseAI.firebaseAI(backend: .googleAI())
// Create a `GenerativeModel` instance with a model that supports your use case
let model = ai.generativeModel(modelName: "gemini-2.5-flash")
// Provide a prompt that contains text
let prompt = "Write a story about a magic backpack."
// To generate text output, call generateContent with the text input
let response = try await model.generateContent(prompt)
print(response.text ?? "No text in response.")
Puoi chiamare
generateContent()
per generare testo da un input di solo testo.
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
val model = Firebase.ai(backend = GenerativeBackend.googleAI())
.generativeModel("gemini-2.5-flash")
// Provide a prompt that contains text
val prompt = "Write a story about a magic backpack."
// To generate text output, call generateContent with the text input
val response = generativeModel.generateContent(prompt)
print(response.text)
Puoi chiamare
generateContent()
per generare testo da un input di solo testo.
ListenableFuture
.
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI())
.generativeModel("gemini-2.5-flash");
// Use the GenerativeModelFutures Java compatibility layer which offers
// support for ListenableFuture and Publisher APIs
GenerativeModelFutures model = GenerativeModelFutures.from(ai);
// Provide a prompt that contains text
Content prompt = new Content.Builder()
.addText("Write a story about a magic backpack.")
.build();
// To generate text output, call generateContent with the text input
ListenableFuture<GenerateContentResponse> response = model.generateContent(prompt);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
@Override
public void onSuccess(GenerateContentResponse result) {
String resultText = result.getText();
System.out.println(resultText);
}
@Override
public void onFailure(Throwable t) {
t.printStackTrace();
}
}, executor);
Puoi chiamare
generateContent()
per generare testo da un input di solo testo.
import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend } from "firebase/ai";
// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
// ...
};
// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);
// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });
// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, { model: "gemini-2.5-flash" });
// Wrap in an async function so you can use await
async function run() {
// Provide a prompt that contains text
const prompt = "Write a story about a magic backpack."
// To generate text output, call generateContent with the text input
const result = await model.generateContent(prompt);
const response = result.response;
const text = response.text();
console.log(text);
}
run();
Puoi chiamare
generateContent()
per generare testo da un input di solo testo.
import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';
// Initialize FirebaseApp
await Firebase.initializeApp(
options: DefaultFirebaseOptions.currentPlatform,
);
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
final model =
FirebaseAI.googleAI().generativeModel(model: 'gemini-2.5-flash');
// Provide a prompt that contains text
final prompt = [Content.text('Write a story about a magic backpack.')];
// To generate text output, call generateContent with the text input
final response = await model.generateContent(prompt);
print(response.text);
Puoi chiamare
GenerateContentAsync()
per generare testo da un input di solo testo.
using Firebase;
using Firebase.AI;
// Initialize the Gemini Developer API backend service
var ai = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI());
// Create a `GenerativeModel` instance with a model that supports your use case
var model = ai.GetGenerativeModel(modelName: "gemini-2.5-flash");
// Provide a prompt that contains text
var prompt = "Write a story about a magic backpack.";
// To generate text output, call GenerateContentAsync with the text input
var response = await model.GenerateContentAsync(prompt);
UnityEngine.Debug.Log(response.Text ?? "No text in response.");
Scopri come scegliere un modello adatta al tuo caso d'uso e alla tua app.
Generare testo da input di testo e file (multimodale)
Prima di provare questo esempio, completa la sezione
Prima di iniziare di questa guida
per configurare il progetto e l'app. In questa sezione, fai clic anche su un pulsante per il provider Gemini API che hai scelto, in modo da visualizzare i contenuti specifici del provider in questa pagina. |
Puoi chiedere a un modello Gemini di generare testo fornendo un prompt con testo e un file, indicando il mimeType
di ogni file di input e il file stesso. Trova i
requisiti e i consigli per i file di input
più avanti in questa pagina.
Il seguente esempio mostra le nozioni di base su come generare testo da un input di file analizzando un singolo file video fornito come dati incorporati (file codificato in base64).
Tieni presente che questo esempio mostra la fornitura del file in linea, ma gli SDK supportano anche la fornitura di un URL di YouTube.Hai bisogno di un file video di esempio?
Puoi utilizzare questo file disponibile pubblicamente con un tipo MIME
video/mp4
(visualizza o scarica il file).https://storage.googleapis.com/cloud-samples-data/video/animals.mp4
Puoi chiamare
generateContent()
per generare testo da input multimodali di testo e file video.
import FirebaseAI
// Initialize the Gemini Developer API backend service
let ai = FirebaseAI.firebaseAI(backend: .googleAI())
// Create a `GenerativeModel` instance with a model that supports your use case
let model = ai.generativeModel(modelName: "gemini-2.5-flash")
// Provide the video as `Data` with the appropriate MIME type.
let video = InlineDataPart(data: try Data(contentsOf: videoURL), mimeType: "video/mp4")
// Provide a text prompt to include with the video
let prompt = "What is in the video?"
// To generate text output, call generateContent with the text and video
let response = try await model.generateContent(video, prompt)
print(response.text ?? "No text in response.")
Puoi chiamare
generateContent()
per generare testo da input multimodali di testo e file video.
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
val model = Firebase.ai(backend = GenerativeBackend.googleAI())
.generativeModel("gemini-2.5-flash")
val contentResolver = applicationContext.contentResolver
contentResolver.openInputStream(videoUri).use { stream ->
stream?.let {
val bytes = stream.readBytes()
// Provide a prompt that includes the video specified above and text
val prompt = content {
inlineData(bytes, "video/mp4")
text("What is in the video?")
}
// To generate text output, call generateContent with the prompt
val response = generativeModel.generateContent(prompt)
Log.d(TAG, response.text ?: "")
}
}
Puoi chiamare
generateContent()
per generare testo da input multimodali di testo e file video.
ListenableFuture
.
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI())
.generativeModel("gemini-2.5-flash");
// Use the GenerativeModelFutures Java compatibility layer which offers
// support for ListenableFuture and Publisher APIs
GenerativeModelFutures model = GenerativeModelFutures.from(ai);
ContentResolver resolver = getApplicationContext().getContentResolver();
try (InputStream stream = resolver.openInputStream(videoUri)) {
File videoFile = new File(new URI(videoUri.toString()));
int videoSize = (int) videoFile.length();
byte[] videoBytes = new byte[videoSize];
if (stream != null) {
stream.read(videoBytes, 0, videoBytes.length);
stream.close();
// Provide a prompt that includes the video specified above and text
Content prompt = new Content.Builder()
.addInlineData(videoBytes, "video/mp4")
.addText("What is in the video?")
.build();
// To generate text output, call generateContent with the prompt
ListenableFuture<GenerateContentResponse> response = model.generateContent(prompt);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
@Override
public void onSuccess(GenerateContentResponse result) {
String resultText = result.getText();
System.out.println(resultText);
}
@Override
public void onFailure(Throwable t) {
t.printStackTrace();
}
}, executor);
}
} catch (IOException e) {
e.printStackTrace();
} catch (URISyntaxException e) {
e.printStackTrace();
}
Puoi chiamare
generateContent()
per generare testo da input multimodali di testo e file video.
import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend } from "firebase/ai";
// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
// ...
};
// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);
// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });
// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, { model: "gemini-2.5-flash" });
// Converts a File object to a Part object.
async function fileToGenerativePart(file) {
const base64EncodedDataPromise = new Promise((resolve) => {
const reader = new FileReader();
reader.onloadend = () => resolve(reader.result.split(',')[1]);
reader.readAsDataURL(file);
});
return {
inlineData: { data: await base64EncodedDataPromise, mimeType: file.type },
};
}
async function run() {
// Provide a text prompt to include with the video
const prompt = "What do you see?";
const fileInputEl = document.querySelector("input[type=file]");
const videoPart = await fileToGenerativePart(fileInputEl.files[0]);
// To generate text output, call generateContent with the text and video
const result = await model.generateContent([prompt, videoPart]);
const response = result.response;
const text = response.text();
console.log(text);
}
run();
Puoi chiamare
generateContent()
per generare testo da input multimodali di testo e file video.
import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';
// Initialize FirebaseApp
await Firebase.initializeApp(
options: DefaultFirebaseOptions.currentPlatform,
);
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
final model =
FirebaseAI.googleAI().generativeModel(model: 'gemini-2.5-flash');
// Provide a text prompt to include with the video
final prompt = TextPart("What's in the video?");
// Prepare video for input
final video = await File('video0.mp4').readAsBytes();
// Provide the video as `Data` with the appropriate mimetype
final videoPart = InlineDataPart('video/mp4', video);
// To generate text output, call generateContent with the text and images
final response = await model.generateContent([
Content.multi([prompt, ...videoPart])
]);
print(response.text);
Puoi chiamare
GenerateContentAsync()
per generare testo da input multimodali di testo e file video.
using Firebase;
using Firebase.AI;
// Initialize the Gemini Developer API backend service
var ai = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI());
// Create a `GenerativeModel` instance with a model that supports your use case
var model = ai.GetGenerativeModel(modelName: "gemini-2.5-flash");
// Provide the video as `data` with the appropriate MIME type.
var video = ModelContent.InlineData("video/mp4",
System.IO.File.ReadAllBytes(System.IO.Path.Combine(
UnityEngine.Application.streamingAssetsPath, "yourVideo.mp4")));
// Provide a text prompt to include with the video
var prompt = ModelContent.Text("What is in the video?");
// To generate text output, call GenerateContentAsync with the text and video
var response = await model.GenerateContentAsync(new [] { video, prompt });
UnityEngine.Debug.Log(response.Text ?? "No text in response.");
Scopri come scegliere un modello adatta al tuo caso d'uso e alla tua app.
Visualizzare in streaming la risposta
Prima di provare questo esempio, completa la sezione
Prima di iniziare di questa guida
per configurare il progetto e l'app. In questa sezione, fai clic anche su un pulsante per il provider Gemini API che hai scelto, in modo da visualizzare i contenuti specifici del provider in questa pagina. |
Puoi ottenere interazioni più rapide senza attendere l'intero risultato della
generazione del modello e utilizzare invece lo streaming per gestire i risultati parziali.
Per riprodurre in streaming la risposta, chiama il numero generateContentStream
.
Visualizza esempio: trasmettere testo generato da input di solo testo
Puoi chiamare
generateContentStream()
per riprodurre in streaming il testo generato dall'input di solo testo.
import FirebaseAI
// Initialize the Gemini Developer API backend service
let ai = FirebaseAI.firebaseAI(backend: .googleAI())
// Create a `GenerativeModel` instance with a model that supports your use case
let model = ai.generativeModel(modelName: "gemini-2.5-flash")
// Provide a prompt that contains text
let prompt = "Write a story about a magic backpack."
// To stream generated text output, call generateContentStream with the text input
let contentStream = try model.generateContentStream(prompt)
for try await chunk in contentStream {
if let text = chunk.text {
print(text)
}
}
Puoi chiamare
generateContentStream()
per riprodurre in streaming il testo generato dall'input di solo testo.
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
val model = Firebase.ai(backend = GenerativeBackend.googleAI())
.generativeModel("gemini-2.5-flash")
// Provide a prompt that includes only text
val prompt = "Write a story about a magic backpack."
// To stream generated text output, call generateContentStream and pass in the prompt
var response = ""
generativeModel.generateContentStream(prompt).collect { chunk ->
print(chunk.text)
response += chunk.text
}
Puoi chiamare
generateContentStream()
per riprodurre in streaming il testo generato dall'input di solo testo.
Publisher
dalla libreria Reactive Streams.
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI())
.generativeModel("gemini-2.5-flash");
// Use the GenerativeModelFutures Java compatibility layer which offers
// support for ListenableFuture and Publisher APIs
GenerativeModelFutures model = GenerativeModelFutures.from(ai);
// Provide a prompt that contains text
Content prompt = new Content.Builder()
.addText("Write a story about a magic backpack.")
.build();
// To stream generated text output, call generateContentStream with the text input
Publisher<GenerateContentResponse> streamingResponse =
model.generateContentStream(prompt);
// Subscribe to partial results from the response
final String[] fullResponse = {""};
streamingResponse.subscribe(new Subscriber<GenerateContentResponse>() {
@Override
public void onNext(GenerateContentResponse generateContentResponse) {
String chunk = generateContentResponse.getText();
fullResponse[0] += chunk;
}
@Override
public void onComplete() {
System.out.println(fullResponse[0]);
}
@Override
public void onError(Throwable t) {
t.printStackTrace();
}
@Override
public void onSubscribe(Subscription s) { }
});
Puoi chiamare
generateContentStream()
per riprodurre in streaming il testo generato dall'input di solo testo.
import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend } from "firebase/ai";
// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
// ...
};
// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);
// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });
// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, { model: "gemini-2.5-flash" });
// Wrap in an async function so you can use await
async function run() {
// Provide a prompt that contains text
const prompt = "Write a story about a magic backpack."
// To stream generated text output, call generateContentStream with the text input
const result = await model.generateContentStream(prompt);
for await (const chunk of result.stream) {
const chunkText = chunk.text();
console.log(chunkText);
}
console.log('aggregated response: ', await result.response);
}
run();
Puoi chiamare
generateContentStream()
per riprodurre in streaming il testo generato dall'input di solo testo.
import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';
// Initialize FirebaseApp
await Firebase.initializeApp(
options: DefaultFirebaseOptions.currentPlatform,
);
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
final model =
FirebaseAI.googleAI().generativeModel(model: 'gemini-2.5-flash');
// Provide a prompt that contains text
final prompt = [Content.text('Write a story about a magic backpack.')];
// To stream generated text output, call generateContentStream with the text input
final response = model.generateContentStream(prompt);
await for (final chunk in response) {
print(chunk.text);
}
Puoi chiamare
GenerateContentStreamAsync()
per riprodurre in streaming il testo generato dall'input di solo testo.
using Firebase;
using Firebase.AI;
// Initialize the Gemini Developer API backend service
var ai = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI());
// Create a `GenerativeModel` instance with a model that supports your use case
var model = ai.GetGenerativeModel(modelName: "gemini-2.5-flash");
// Provide a prompt that contains text
var prompt = "Write a story about a magic backpack.";
// To stream generated text output, call GenerateContentStreamAsync with the text input
var responseStream = model.GenerateContentStreamAsync(prompt);
await foreach (var response in responseStream) {
if (!string.IsNullOrWhiteSpace(response.Text)) {
UnityEngine.Debug.Log(response.Text);
}
}
Scopri come scegliere un modello adatta al tuo caso d'uso e alla tua app.
Visualizza esempio: Stream generated text from multimodal input
Puoi chiamare
generateContentStream()
per riprodurre in streaming il testo generato dall'input multimodale di testo e un singolo video.
import FirebaseAI
// Initialize the Gemini Developer API backend service
let ai = FirebaseAI.firebaseAI(backend: .googleAI())
// Create a `GenerativeModel` instance with a model that supports your use case
let model = ai.generativeModel(modelName: "gemini-2.5-flash")
// Provide the video as `Data` with the appropriate MIME type
let video = InlineDataPart(data: try Data(contentsOf: videoURL), mimeType: "video/mp4")
// Provide a text prompt to include with the video
let prompt = "What is in the video?"
// To stream generated text output, call generateContentStream with the text and video
let contentStream = try model.generateContentStream(video, prompt)
for try await chunk in contentStream {
if let text = chunk.text {
print(text)
}
}
Puoi chiamare
generateContentStream()
per riprodurre in streaming il testo generato dall'input multimodale di testo e un singolo video.
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
val model = Firebase.ai(backend = GenerativeBackend.googleAI())
.generativeModel("gemini-2.5-flash")
val contentResolver = applicationContext.contentResolver
contentResolver.openInputStream(videoUri).use { stream ->
stream?.let {
val bytes = stream.readBytes()
// Provide a prompt that includes the video specified above and text
val prompt = content {
inlineData(bytes, "video/mp4")
text("What is in the video?")
}
// To stream generated text output, call generateContentStream with the prompt
var fullResponse = ""
generativeModel.generateContentStream(prompt).collect { chunk ->
Log.d(TAG, chunk.text ?: "")
fullResponse += chunk.text
}
}
}
Puoi chiamare
generateContentStream()
per riprodurre in streaming il testo generato dall'input multimodale di testo e un singolo video.
Publisher
dalla libreria Reactive Streams.
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI())
.generativeModel("gemini-2.5-flash");
// Use the GenerativeModelFutures Java compatibility layer which offers
// support for ListenableFuture and Publisher APIs
GenerativeModelFutures model = GenerativeModelFutures.from(ai);
ContentResolver resolver = getApplicationContext().getContentResolver();
try (InputStream stream = resolver.openInputStream(videoUri)) {
File videoFile = new File(new URI(videoUri.toString()));
int videoSize = (int) videoFile.length();
byte[] videoBytes = new byte[videoSize];
if (stream != null) {
stream.read(videoBytes, 0, videoBytes.length);
stream.close();
// Provide a prompt that includes the video specified above and text
Content prompt = new Content.Builder()
.addInlineData(videoBytes, "video/mp4")
.addText("What is in the video?")
.build();
// To stream generated text output, call generateContentStream with the prompt
Publisher<GenerateContentResponse> streamingResponse =
model.generateContentStream(prompt);
final String[] fullResponse = {""};
streamingResponse.subscribe(new Subscriber<GenerateContentResponse>() {
@Override
public void onNext(GenerateContentResponse generateContentResponse) {
String chunk = generateContentResponse.getText();
fullResponse[0] += chunk;
}
@Override
public void onComplete() {
System.out.println(fullResponse[0]);
}
@Override
public void onError(Throwable t) {
t.printStackTrace();
}
@Override
public void onSubscribe(Subscription s) {
}
});
}
} catch (IOException e) {
e.printStackTrace();
} catch (URISyntaxException e) {
e.printStackTrace();
}
Puoi chiamare
generateContentStream()
per riprodurre in streaming il testo generato dall'input multimodale di testo e un singolo video.
import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend } from "firebase/ai";
// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
// ...
};
// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);
// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });
// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, { model: "gemini-2.5-flash" });
// Converts a File object to a Part object.
async function fileToGenerativePart(file) {
const base64EncodedDataPromise = new Promise((resolve) => {
const reader = new FileReader();
reader.onloadend = () => resolve(reader.result.split(',')[1]);
reader.readAsDataURL(file);
});
return {
inlineData: { data: await base64EncodedDataPromise, mimeType: file.type },
};
}
async function run() {
// Provide a text prompt to include with the video
const prompt = "What do you see?";
const fileInputEl = document.querySelector("input[type=file]");
const videoPart = await fileToGenerativePart(fileInputEl.files[0]);
// To stream generated text output, call generateContentStream with the text and video
const result = await model.generateContentStream([prompt, videoPart]);
for await (const chunk of result.stream) {
const chunkText = chunk.text();
console.log(chunkText);
}
}
run();
Puoi chiamare
generateContentStream()
per riprodurre in streaming il testo generato dall'input multimodale di testo e un singolo video.
import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';
// Initialize FirebaseApp
await Firebase.initializeApp(
options: DefaultFirebaseOptions.currentPlatform,
);
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
final model =
FirebaseAI.googleAI().generativeModel(model: 'gemini-2.5-flash');
// Provide a text prompt to include with the video
final prompt = TextPart("What's in the video?");
// Prepare video for input
final video = await File('video0.mp4').readAsBytes();
// Provide the video as `Data` with the appropriate mimetype
final videoPart = InlineDataPart('video/mp4', video);
// To stream generated text output, call generateContentStream with the text and image
final response = await model.generateContentStream([
Content.multi([prompt,videoPart])
]);
await for (final chunk in response) {
print(chunk.text);
}
Puoi chiamare
GenerateContentStreamAsync()
per riprodurre in streaming il testo generato dall'input multimodale di testo e un singolo video.
using Firebase;
using Firebase.AI;
// Initialize the Gemini Developer API backend service
var ai = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI());
// Create a `GenerativeModel` instance with a model that supports your use case
var model = ai.GetGenerativeModel(modelName: "gemini-2.5-flash");
// Provide the video as `data` with the appropriate MIME type.
var video = ModelContent.InlineData("video/mp4",
System.IO.File.ReadAllBytes(System.IO.Path.Combine(
UnityEngine.Application.streamingAssetsPath, "yourVideo.mp4")));
// Provide a text prompt to include with the video
var prompt = ModelContent.Text("What is in the video?");
// To stream generated text output, call GenerateContentStreamAsync with the text and video
var responseStream = model.GenerateContentStreamAsync(new [] { video, prompt });
await foreach (var response in responseStream) {
if (!string.IsNullOrWhiteSpace(response.Text)) {
UnityEngine.Debug.Log(response.Text);
}
}
Scopri come scegliere un modello adatta al tuo caso d'uso e alla tua app.
Requisiti e consigli per i file immagine di input
Tieni presente che un file fornito come dati incorporati viene codificato in base64 durante il transito, il che aumenta le dimensioni della richiesta. Se una richiesta è troppo grande, viene visualizzato un errore HTTP 413.
Consulta File di input supportati e requisiti per Vertex AI Gemini API per informazioni dettagliate su:
- Diverse opzioni per fornire un file in una richiesta (in linea o utilizzando l'URL o l'URI del file)
- Tipi di file supportati
- Tipi MIME supportati e come specificarli
- Requisiti e best practice per file e richieste multimodali
Cos'altro puoi fare?
- Scopri come contare i token prima di inviare prompt lunghi al modello.
- Configura Cloud Storage for Firebase in modo da poter includere file di grandi dimensioni nelle richieste multimodali e disporre di una soluzione più gestita per fornire file nei prompt. I file possono includere immagini, PDF, video e audio.
-
Inizia a pensare a prepararti per la produzione (consulta l'elenco di controllo per la produzione),
tra cui:
- Configurazione di Firebase App Check per proteggere Gemini API da abusi da parte di client non autorizzati.
- Integrazione di Firebase Remote Config per aggiornare i valori nella tua app (ad esempio il nome del modello) senza rilasciare una nuova versione dell'app.
Prova altre funzionalità
- Crea conversazioni a più turni (chat).
- Genera testo da prompt solo di testo.
- Genera output strutturato (come JSON) da prompt di testo e multimodali.
- Genera immagini da prompt di testo (Gemini o Imagen).
- Utilizza strumenti (come la chiamata di funzioni e l'ancoraggio con la Ricerca Google) per connettere un modello Gemini ad altre parti della tua app e a sistemi e informazioni esterni.
Scopri come controllare la generazione di contenuti
- Comprendere la progettazione dei prompt, incluse best practice, strategie ed esempi di prompt.
- Configura i parametri del modello, ad esempio temperatura e token di output massimi (per Gemini) o proporzioni e generazione di persone (per Imagen).
- Utilizza le impostazioni di sicurezza per regolare la probabilità di ricevere risposte che potrebbero essere considerate dannose.
Scopri di più sui modelli supportati
Scopri di più sui modelli disponibili per vari casi d'uso e sulle relative quote e prezzi.Fornisci un feedback sulla tua esperienza con Firebase AI Logic