Generowanie tekstu za pomocą interfejsu Gemini API

Możesz poprosić model Gemini o wygenerowanie tekstu na podstawie promptu tekstowego lub multimodalnego. Jeśli używasz Firebase AI Logic, możesz wysłać to żądanie bezpośrednio z aplikacji.

Prompty multimodalne mogą zawierać różne typy danych wejściowych (np. tekst wraz z obrazami, plikami PDF, plikami tekstowymi, plikami audio i filmami).

W tym przewodniku dowiesz się, jak generować tekst z promptu tekstowego i podstawowego promptu multimodalnego, który zawiera plik.

Przejdź do przykładowego kodu dla danych wejściowych tylko tekstowych Przejdź do przykładowego kodu dla danych wejściowych multimodalnych


Zanim zaczniesz

Kliknij dostawcę Gemini API, aby wyświetlić na tej stronie treści i kod związane z tym dostawcą.

Jeśli jeszcze tego nie zrobisz, przeczytaj przewodnik dla początkujących, w którym znajdziesz instrukcje konfigurowania projektu Firebase, łączenia aplikacji z Firebase, dodawania pakietu SDK, inicjowania usługi backendowej wybranego dostawcy Gemini API oraz tworzenia instancji GenerativeModel.

Aby przetestować prompty i przeprowadzić ich iterację, a także uzyskać wygenerowany fragment kodu, zalecamy użycie Google AI Studio.

Generowanie tekstu na podstawie danych wejściowych zawierających tylko tekst

Zanim użyjesz tego szablonu, zapoznaj się z sekcją Zanim zaczniesz tego przewodnika, aby skonfigurować projekt i aplikację.
W tej sekcji kliknij też przycisk wybranegoGemini API dostawcy, aby wyświetlić na tej stronie treści związane z tym dostawcą.

Możesz poprosić model Gemini o wygenerowanie tekstu, podając dane wejściowe w postaci tekstu.

Możesz wywołać funkcję generateContent(), aby wygenerować tekst z danych wejściowych tylko tekstowych.


import FirebaseAI

// Initialize the Gemini Developer API backend service
let ai = FirebaseAI.firebaseAI(backend: .googleAI())

// Create a `GenerativeModel` instance with a model that supports your use case
let model = ai.generativeModel(modelName: "gemini-2.0-flash")


// Provide a prompt that contains text
let prompt = "Write a story about a magic backpack."

// To generate text output, call generateContent with the text input
let response = try await model.generateContent(prompt)
print(response.text ?? "No text in response.")

Możesz wywołać funkcję generateContent(), aby wygenerować tekst z danych wejściowych tylko tekstowych.

W przypadku Kotlina metody w tym pakiecie SDK są funkcjami zawieszającymi i muszą być wywoływane z zakresu współbieżności.

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
val model = Firebase.ai(backend = GenerativeBackend.googleAI())
                        .generativeModel("gemini-2.0-flash")


// Provide a prompt that contains text
val prompt = "Write a story about a magic backpack."

// To generate text output, call generateContent with the text input
val response = generativeModel.generateContent(prompt)
print(response.text)

Możesz wywołać funkcję generateContent(), aby wygenerować tekst z danych wejściowych tylko tekstowych.

W przypadku Javy metody w tym pakiecie SDK zwracają wartość ListenableFuture.

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI())
        .generativeModel("gemini-2.0-flash");

// Use the GenerativeModelFutures Java compatibility layer which offers
// support for ListenableFuture and Publisher APIs
GenerativeModelFutures model = GenerativeModelFutures.from(ai);


// Provide a prompt that contains text
Content prompt = new Content.Builder()
    .addText("Write a story about a magic backpack.")
    .build();

// To generate text output, call generateContent with the text input
ListenableFuture<GenerateContentResponse> response = model.generateContent(prompt);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
    @Override
    public void onSuccess(GenerateContentResponse result) {
        String resultText = result.getText();
        System.out.println(resultText);
    }

    @Override
    public void onFailure(Throwable t) {
        t.printStackTrace();
    }
}, executor);

Możesz wywołać funkcję generateContent(), aby wygenerować tekst z danych wejściowych tylko tekstowych.


import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend } from "firebase/ai";

// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
  // ...
};

// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);

// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });

// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, { model: "gemini-2.0-flash" });


// Wrap in an async function so you can use await
async function run() {
  // Provide a prompt that contains text
  const prompt = "Write a story about a magic backpack."

  // To generate text output, call generateContent with the text input
  const result = await model.generateContent(prompt);

  const response = result.response;
  const text = response.text();
  console.log(text);
}

run();

Aby wygenerować tekst z danych wejściowych w formacie tekstowym, możesz użyć polecenia generateContent().


import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';

// Initialize FirebaseApp
await Firebase.initializeApp(
  options: DefaultFirebaseOptions.currentPlatform,
);

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
final model =
      FirebaseAI.googleAI().generativeModel(model: 'gemini-2.0-flash');


// Provide a prompt that contains text
final prompt = [Content.text('Write a story about a magic backpack.')];

// To generate text output, call generateContent with the text input
final response = await model.generateContent(prompt);
print(response.text);

Możesz wywołać funkcję GenerateContentAsync(), aby wygenerować tekst z danych wejściowych tylko tekstowych.


using Firebase;
using Firebase.AI;

// Initialize the Gemini Developer API backend service
var ai = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI());

// Create a `GenerativeModel` instance with a model that supports your use case
var model = ai.GetGenerativeModel(modelName: "gemini-2.0-flash");


// Provide a prompt that contains text
var prompt = "Write a story about a magic backpack.";

// To generate text output, call GenerateContentAsync with the text input
var response = await model.GenerateContentAsync(prompt);
UnityEngine.Debug.Log(response.Text ?? "No text in response.");

Generowanie tekstu na podstawie danych multimodalnych (tekst i plik)

Zanim użyjesz tego szablonu, zapoznaj się z sekcją Zanim zaczniesz tego przewodnika, aby skonfigurować projekt i aplikację.
W tej sekcji kliknij też przycisk wybranegoGemini API dostawcy, aby wyświetlić na tej stronie treści związane z tym dostawcą.

Możesz poprosić model Gemini o wygenerowanie tekstu, podając prompt z tekstem i plikiem – udostępniając mimeType każdego pliku wejściowego oraz sam plik. Wymagania i zalecenia dotyczące plików wejściowych znajdziesz dalej na tej stronie.

Ten przykład pokazuje podstawy generowania tekstu z pliku wejściowego poprzez analizę pojedynczego pliku wideo dostarczonego jako dane wstawione (plik z kodowaniem base64).

Ten przykład pokazuje podanie pliku w postaci inline, ale pakiety SDK obsługują też podawanie adresu URL filmu w YouTube.

Możesz użyć tego publicznie dostępnego pliku o typie MIME video/mp4 (wyświetlanie lub pobieranie pliku). https://storage.googleapis.com/cloud-samples-data/video/animals.mp4

Możesz wywołać funkcję generateContent(), aby wygenerować tekst z multimodalnych danych wejściowych w plikach tekstowych i wideo.


import FirebaseAI

// Initialize the Gemini Developer API backend service
let ai = FirebaseAI.firebaseAI(backend: .googleAI())

// Create a `GenerativeModel` instance with a model that supports your use case
let model = ai.generativeModel(modelName: "gemini-2.0-flash")


// Provide the video as `Data` with the appropriate MIME type.
let video = InlineDataPart(data: try Data(contentsOf: videoURL), mimeType: "video/mp4")

// Provide a text prompt to include with the video
let prompt = "What is in the video?"

// To generate text output, call generateContent with the text and video
let response = try await model.generateContent(video, prompt)
print(response.text ?? "No text in response.")

Możesz wywołać funkcję generateContent(), aby wygenerować tekst z multimodalnych danych wejściowych w plikach tekstowych i wideo.

W przypadku Kotlina metody w tym pakiecie SDK są funkcjami zawieszającymi i muszą być wywoływane z zakresu współbieżności.

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
val model = Firebase.ai(backend = GenerativeBackend.googleAI())
                        .generativeModel("gemini-2.0-flash")


val contentResolver = applicationContext.contentResolver
contentResolver.openInputStream(videoUri).use { stream ->
  stream?.let {
    val bytes = stream.readBytes()

    // Provide a prompt that includes the video specified above and text
    val prompt = content {
        inlineData(bytes, "video/mp4")
        text("What is in the video?")
    }

    // To generate text output, call generateContent with the prompt
    val response = generativeModel.generateContent(prompt)
    Log.d(TAG, response.text ?: "")
  }
}

Możesz wywołać funkcję generateContent(), aby wygenerować tekst z multimodalnych danych wejściowych w plikach tekstowych i wideo.

W przypadku Javy metody w tym pakiecie SDK zwracają wartość ListenableFuture.

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI())
        .generativeModel("gemini-2.0-flash");

// Use the GenerativeModelFutures Java compatibility layer which offers
// support for ListenableFuture and Publisher APIs
GenerativeModelFutures model = GenerativeModelFutures.from(ai);


ContentResolver resolver = getApplicationContext().getContentResolver();
try (InputStream stream = resolver.openInputStream(videoUri)) {
    File videoFile = new File(new URI(videoUri.toString()));
    int videoSize = (int) videoFile.length();
    byte[] videoBytes = new byte[videoSize];
    if (stream != null) {
        stream.read(videoBytes, 0, videoBytes.length);
        stream.close();

        // Provide a prompt that includes the video specified above and text
        Content prompt = new Content.Builder()
                .addInlineData(videoBytes, "video/mp4")
                .addText("What is in the video?")
                .build();

        // To generate text output, call generateContent with the prompt
        ListenableFuture<GenerateContentResponse> response = model.generateContent(prompt);
        Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
            @Override
            public void onSuccess(GenerateContentResponse result) {
                String resultText = result.getText();
                System.out.println(resultText);
            }

            @Override
            public void onFailure(Throwable t) {
                t.printStackTrace();
            }
        }, executor);
    }
} catch (IOException e) {
    e.printStackTrace();
} catch (URISyntaxException e) {
    e.printStackTrace();
}

Możesz wywołać funkcję generateContent(), aby wygenerować tekst z multimodalnych danych wejściowych w plikach tekstowych i wideo.


import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend } from "firebase/ai";

// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
  // ...
};

// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);

// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });

// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, { model: "gemini-2.0-flash" });


// Converts a File object to a Part object.
async function fileToGenerativePart(file) {
  const base64EncodedDataPromise = new Promise((resolve) => {
    const reader = new FileReader();
    reader.onloadend = () => resolve(reader.result.split(',')[1]);
    reader.readAsDataURL(file);
  });
  return {
    inlineData: { data: await base64EncodedDataPromise, mimeType: file.type },
  };
}

async function run() {
  // Provide a text prompt to include with the video
  const prompt = "What do you see?";

  const fileInputEl = document.querySelector("input[type=file]");
  const videoPart = await fileToGenerativePart(fileInputEl.files[0]);

  // To generate text output, call generateContent with the text and video
  const result = await model.generateContent([prompt, videoPart]);

  const response = result.response;
  const text = response.text();
  console.log(text);
}

run();

Możesz wywołać funkcję generateContent(), aby wygenerować tekst z multimodalnych danych wejściowych w postaci plików tekstowych i wideo.


import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';

// Initialize FirebaseApp
await Firebase.initializeApp(
  options: DefaultFirebaseOptions.currentPlatform,
);

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
final model =
      FirebaseAI.googleAI().generativeModel(model: 'gemini-2.0-flash');


// Provide a text prompt to include with the video
final prompt = TextPart("What's in the video?");

// Prepare video for input
final video = await File('video0.mp4').readAsBytes();

// Provide the video as `Data` with the appropriate mimetype
final videoPart = InlineDataPart('video/mp4', video);

// To generate text output, call generateContent with the text and images
final response = await model.generateContent([
  Content.multi([prompt, ...videoPart])
]);
print(response.text);

Możesz wywołać funkcję GenerateContentAsync(), aby wygenerować tekst z multimodalnych danych wejściowych w plikach tekstowych i wideo.


using Firebase;
using Firebase.AI;

// Initialize the Gemini Developer API backend service
var ai = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI());

// Create a `GenerativeModel` instance with a model that supports your use case
var model = ai.GetGenerativeModel(modelName: "gemini-2.0-flash");


// Provide the video as `data` with the appropriate MIME type.
var video = ModelContent.InlineData("video/mp4",
      System.IO.File.ReadAllBytes(System.IO.Path.Combine(
          UnityEngine.Application.streamingAssetsPath, "yourVideo.mp4")));

// Provide a text prompt to include with the video
var prompt = ModelContent.Text("What is in the video?");

// To generate text output, call GenerateContentAsync with the text and video
var response = await model.GenerateContentAsync(new [] { video, prompt });
UnityEngine.Debug.Log(response.Text ?? "No text in response.");

Dowiedz się, jak wybrać model odpowiedni do Twojego przypadku użycia i aplikacji.

Odpowiadaj na pytania stopniowo

Zanim użyjesz tego szablonu, zapoznaj się z sekcją Zanim zaczniesz tego przewodnika, aby skonfigurować projekt i aplikację.
W tej sekcji kliknij też przycisk wybranegoGemini API dostawcy, aby wyświetlić na tej stronie treści związane z tym dostawcą.

Możesz uzyskać szybsze interakcje, nie czekając na pełny wynik wygenerowany przez model, a zamiast tego używać strumieniowego przetwarzania częściowych wyników. Aby przesyłać strumieniowo odpowiedź, zadzwoń pod numer generateContentStream.

Możesz wywołać funkcję generateContentStream(), aby przesyłać generowany tekst z danych wejściowych zawierających tylko tekst.


import FirebaseAI

// Initialize the Gemini Developer API backend service
let ai = FirebaseAI.firebaseAI(backend: .googleAI())

// Create a `GenerativeModel` instance with a model that supports your use case
let model = ai.generativeModel(modelName: "gemini-2.0-flash")


// Provide a prompt that contains text
let prompt = "Write a story about a magic backpack."

// To stream generated text output, call generateContentStream with the text input
let contentStream = try model.generateContentStream(prompt)
for try await chunk in contentStream {
  if let text = chunk.text {
    print(text)
  }
}

Możesz wywołać funkcję generateContentStream(), aby przesyłać generowany tekst z danych wejściowych zawierających tylko tekst.

W przypadku Kotlina metody w tym pakiecie SDK są funkcjami zawieszającymi i muszą być wywoływane z zakresu współbieżności.

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
val model = Firebase.ai(backend = GenerativeBackend.googleAI())
                        .generativeModel("gemini-2.0-flash")


// Provide a prompt that includes only text
val prompt = "Write a story about a magic backpack."

// To stream generated text output, call generateContentStream and pass in the prompt
var response = ""
generativeModel.generateContentStream(prompt).collect { chunk ->
    print(chunk.text)
    response += chunk.text
}

Możesz wywołać funkcję generateContentStream(), aby przesyłać generowany tekst z danych wejściowych zawierających tylko tekst.

W przypadku Javy metody strumieniowania w tym pakiecie SDK zwracają typ Publisherbiblioteki Reaktywne strumienie.

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI())
        .generativeModel("gemini-2.0-flash");

// Use the GenerativeModelFutures Java compatibility layer which offers
// support for ListenableFuture and Publisher APIs
GenerativeModelFutures model = GenerativeModelFutures.from(ai);


// Provide a prompt that contains text
Content prompt = new Content.Builder()
        .addText("Write a story about a magic backpack.")
        .build();

// To stream generated text output, call generateContentStream with the text input
Publisher<GenerateContentResponse> streamingResponse =
    model.generateContentStream(prompt);

// Subscribe to partial results from the response
final String[] fullResponse = {""};
streamingResponse.subscribe(new Subscriber<GenerateContentResponse>() {
  @Override
  public void onNext(GenerateContentResponse generateContentResponse) {
    String chunk = generateContentResponse.getText();
    fullResponse[0] += chunk;
  }

  @Override
  public void onComplete() {
    System.out.println(fullResponse[0]);
  }

  @Override
  public void onError(Throwable t) {
    t.printStackTrace();
  }

  @Override
  public void onSubscribe(Subscription s) { }
});

Możesz wywołać funkcję generateContentStream(), aby przesyłać generowany tekst z danych wejściowych zawierających tylko tekst.


import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend } from "firebase/ai";

// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
  // ...
};

// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);

// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });

// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, { model: "gemini-2.0-flash" });


// Wrap in an async function so you can use await
async function run() {
  // Provide a prompt that contains text
  const prompt = "Write a story about a magic backpack."

  // To stream generated text output, call generateContentStream with the text input
  const result = await model.generateContentStream(prompt);

  for await (const chunk of result.stream) {
    const chunkText = chunk.text();
    console.log(chunkText);
  }

  console.log('aggregated response: ', await result.response);
}

run();

Możesz wywołać funkcję generateContentStream(), aby przesyłać generowany tekst z danych wejściowych zawierających tylko tekst.


import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';

// Initialize FirebaseApp
await Firebase.initializeApp(
  options: DefaultFirebaseOptions.currentPlatform,
);

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
final model =
      FirebaseAI.googleAI().generativeModel(model: 'gemini-2.0-flash');


// Provide a prompt that contains text
final prompt = [Content.text('Write a story about a magic backpack.')];

// To stream generated text output, call generateContentStream with the text input
final response = model.generateContentStream(prompt);
await for (final chunk in response) {
  print(chunk.text);
}

Możesz wywołać funkcję GenerateContentStreamAsync(), aby przesyłać generowany tekst z danych wejściowych zawierających tylko tekst.


using Firebase;
using Firebase.AI;

// Initialize the Gemini Developer API backend service
var ai = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI());

// Create a `GenerativeModel` instance with a model that supports your use case
var model = ai.GetGenerativeModel(modelName: "gemini-2.0-flash");


// Provide a prompt that contains text
var prompt = "Write a story about a magic backpack.";

// To stream generated text output, call GenerateContentStreamAsync with the text input
var responseStream = model.GenerateContentStreamAsync(prompt);
await foreach (var response in responseStream) {
  if (!string.IsNullOrWhiteSpace(response.Text)) {
    UnityEngine.Debug.Log(response.Text);
  }
}

Możesz wywołać funkcję generateContentStream(), aby przesyłać generowany tekst z wielomodalnego wejścia z tekstem i jednego filmu.


import FirebaseAI

// Initialize the Gemini Developer API backend service
let ai = FirebaseAI.firebaseAI(backend: .googleAI())

// Create a `GenerativeModel` instance with a model that supports your use case
let model = ai.generativeModel(modelName: "gemini-2.0-flash")


// Provide the video as `Data` with the appropriate MIME type
let video = InlineDataPart(data: try Data(contentsOf: videoURL), mimeType: "video/mp4")

// Provide a text prompt to include with the video
let prompt = "What is in the video?"

// To stream generated text output, call generateContentStream with the text and video
let contentStream = try model.generateContentStream(video, prompt)
for try await chunk in contentStream {
  if let text = chunk.text {
    print(text)
  }
}

Możesz wywołać funkcję generateContentStream(), aby przesyłać generowany tekst z wielomodalnego wejścia z tekstem i jednego filmu.

W przypadku Kotlina metody w tym pakiecie SDK są funkcjami zawieszającymi i muszą być wywoływane z zakresu współbieżności.

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
val model = Firebase.ai(backend = GenerativeBackend.googleAI())
                        .generativeModel("gemini-2.0-flash")


val contentResolver = applicationContext.contentResolver
contentResolver.openInputStream(videoUri).use { stream ->
  stream?.let {
    val bytes = stream.readBytes()

    // Provide a prompt that includes the video specified above and text
    val prompt = content {
        inlineData(bytes, "video/mp4")
        text("What is in the video?")
    }

    // To stream generated text output, call generateContentStream with the prompt
    var fullResponse = ""
    generativeModel.generateContentStream(prompt).collect { chunk ->
        Log.d(TAG, chunk.text ?: "")
        fullResponse += chunk.text
    }
  }
}

Możesz wywołać funkcję generateContentStream(), aby przesyłać generowany tekst z wielomodalnego wejścia z tekstem i jednego filmu.

W przypadku Javy metody strumieniowania w tym pakiecie SDK zwracają typ Publisherbiblioteki Reaktywne strumienie.

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI())
        .generativeModel("gemini-2.0-flash");

// Use the GenerativeModelFutures Java compatibility layer which offers
// support for ListenableFuture and Publisher APIs
GenerativeModelFutures model = GenerativeModelFutures.from(ai);


ContentResolver resolver = getApplicationContext().getContentResolver();
try (InputStream stream = resolver.openInputStream(videoUri)) {
    File videoFile = new File(new URI(videoUri.toString()));
    int videoSize = (int) videoFile.length();
    byte[] videoBytes = new byte[videoSize];
    if (stream != null) {
        stream.read(videoBytes, 0, videoBytes.length);
        stream.close();

        // Provide a prompt that includes the video specified above and text
        Content prompt = new Content.Builder()
                .addInlineData(videoBytes, "video/mp4")
                .addText("What is in the video?")
                .build();

        // To stream generated text output, call generateContentStream with the prompt
        Publisher<GenerateContentResponse> streamingResponse =
                model.generateContentStream(prompt);

        final String[] fullResponse = {""};

        streamingResponse.subscribe(new Subscriber<GenerateContentResponse>() {
            @Override
            public void onNext(GenerateContentResponse generateContentResponse) {
                String chunk = generateContentResponse.getText();
                fullResponse[0] += chunk;
            }

            @Override
            public void onComplete() {
                System.out.println(fullResponse[0]);
            }

            @Override
            public void onError(Throwable t) {
                t.printStackTrace();
            }

            @Override
            public void onSubscribe(Subscription s) {
            }
         });
    }
} catch (IOException e) {
    e.printStackTrace();
} catch (URISyntaxException e) {
    e.printStackTrace();
}

Możesz wywołać funkcję generateContentStream(), aby przesyłać generowany tekst z wielomodalnego wejścia z tekstem i jednego filmu.


import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend } from "firebase/ai";

// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
  // ...
};

// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);

// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });

// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, { model: "gemini-2.0-flash" });


// Converts a File object to a Part object.
async function fileToGenerativePart(file) {
  const base64EncodedDataPromise = new Promise((resolve) => {
    const reader = new FileReader();
    reader.onloadend = () => resolve(reader.result.split(',')[1]);
    reader.readAsDataURL(file);
  });
  return {
    inlineData: { data: await base64EncodedDataPromise, mimeType: file.type },
  };
}

async function run() {
  // Provide a text prompt to include with the video
  const prompt = "What do you see?";

  const fileInputEl = document.querySelector("input[type=file]");
  const videoPart = await fileToGenerativePart(fileInputEl.files[0]);

  // To stream generated text output, call generateContentStream with the text and video
  const result = await model.generateContentStream([prompt, videoPart]);

  for await (const chunk of result.stream) {
    const chunkText = chunk.text();
    console.log(chunkText);
  }
}

run();

Możesz wywołać funkcję generateContentStream(), aby przesyłać generowany tekst z wielomodalnego wejścia z tekstem i jednym filmem.


import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';

// Initialize FirebaseApp
await Firebase.initializeApp(
  options: DefaultFirebaseOptions.currentPlatform,
);

// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
final model =
      FirebaseAI.googleAI().generativeModel(model: 'gemini-2.0-flash');


// Provide a text prompt to include with the video
final prompt = TextPart("What's in the video?");

// Prepare video for input
final video = await File('video0.mp4').readAsBytes();

// Provide the video as `Data` with the appropriate mimetype
final videoPart = InlineDataPart('video/mp4', video);

// To stream generated text output, call generateContentStream with the text and image
final response = await model.generateContentStream([
  Content.multi([prompt,videoPart])
]);
await for (final chunk in response) {
  print(chunk.text);
}

Możesz wywołać funkcję GenerateContentStreamAsync(), aby przesyłać generowany tekst z wielomodalnego wejścia z tekstem i jednego filmu.


using Firebase;
using Firebase.AI;

// Initialize the Gemini Developer API backend service
var ai = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI());

// Create a `GenerativeModel` instance with a model that supports your use case
var model = ai.GetGenerativeModel(modelName: "gemini-2.0-flash");


// Provide the video as `data` with the appropriate MIME type.
var video = ModelContent.InlineData("video/mp4",
      System.IO.File.ReadAllBytes(System.IO.Path.Combine(
          UnityEngine.Application.streamingAssetsPath, "yourVideo.mp4")));

// Provide a text prompt to include with the video
var prompt = ModelContent.Text("What is in the video?");

// To stream generated text output, call GenerateContentStreamAsync with the text and video
var responseStream = model.GenerateContentStreamAsync(new [] { video, prompt });
await foreach (var response in responseStream) {
  if (!string.IsNullOrWhiteSpace(response.Text)) {
    UnityEngine.Debug.Log(response.Text);
  }
}



Wymagania i zalecenia dotyczące plików z obrazami wejściowymi

Pamiętaj, że plik przesłany jako dane wstawione jest kodowany w trakcie przesyłania do formatu Base64, co zwiększa rozmiar żądania. Jeśli żądanie jest zbyt duże, pojawia się błąd HTTP 413.

Aby uzyskać szczegółowe informacje o obsługiwanych plikach wejściowych i wymaganiach dotyczących usługi Vertex AI Gemini API, zapoznaj się z tymi tematami:

  • różne opcje udostępniania pliku w żądaniu (wbudowane lub za pomocą adresu URL lub identyfikatora URI pliku);
  • Obsługiwane typy plików
  • Obsługiwane typy MIME i sposób ich określania
  • Wymagania i sprawdzone metody dotyczące plików i zapytań multimodalnych



Co jeszcze możesz zrobić?

Wypróbuj inne funkcje

Dowiedz się, jak kontrolować generowanie treści

Możesz też eksperymentować z promptami i konfiguracjami modeli, a nawet wygenerować fragment kodu za pomocą Google AI Studio.

Więcej informacji o obsługiwanych modelach

Dowiedz się więcej o modelach dostępnych w różnych przypadkach użycia oraz o ich limitachcenach.


Przesyłanie opinii o usługachFirebase AI Logic