Вы можете попросить модель Gemini сгенерировать текст на основе текстового запроса или мультимодального запроса. При использовании Firebase AI Logic вы можете отправить этот запрос непосредственно из своего приложения.
Мультимодальные запросы могут включать в себя несколько типов ввода (например, текст вместе с изображениями, PDF-файлы, текстовые файлы, аудио и видео).
В этом руководстве показано, как генерировать текст из текстовой подсказки, а также из простой мультимодальной подсказки, включающей файл.
Перейти к коду для ввода только текста Перейти к коду для многомодального ввода Перейти к коду для потоковых ответов
| Дополнительные возможности работы с текстом см. в других руководствах. Создание структурированного вывода Многоходовой чат Двусторонняя потоковая передача Генерация текста на устройстве Генерация изображений из текста |
Прежде чем начать
Чтобы просмотреть контент и код, относящиеся к вашему поставщику API Gemini , нажмите на него. |
Если вы еще этого не сделали, пройдите руководство по началу работы , в котором описывается, как настроить проект Firebase, подключить приложение к Firebase, добавить SDK, инициализировать бэкэнд-сервис для выбранного вами поставщика API Gemini и создать экземпляр GenerativeModel .
Создание текста из текстового ввода.
| Прежде чем опробовать этот пример, выполните раздел «Перед началом работы » этого руководства, чтобы настроить свой проект и приложение. В этом разделе вам также нужно будет нажать кнопку для выбранного вами поставщика API Gemini , чтобы увидеть на этой странице контент, относящийся к данному поставщику . |
Вы можете попросить модель Gemini сгенерировать текст, введя в поле ввода только текст.
Быстрый
Вы можете вызвать generateContent() для генерации текста из текстового поля ввода.
import FirebaseAILogic
// Initialize the Gemini Developer API backend service
let ai = FirebaseAI.firebaseAI(backend: .googleAI())
// Create a `GenerativeModel` instance with a model that supports your use case
let model = ai.generativeModel(modelName: "gemini-2.5-flash")
// Provide a prompt that contains text
let prompt = "Write a story about a magic backpack."
// To generate text output, call generateContent with the text input
let response = try await model.generateContent(prompt)
print(response.text ?? "No text in response.")
Kotlin
Вы можете вызвать generateContent() для генерации текста из текстового поля ввода.
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
val model = Firebase.ai(backend = GenerativeBackend.googleAI())
.generativeModel("gemini-2.5-flash")
// Provide a prompt that contains text
val prompt = "Write a story about a magic backpack."
// To generate text output, call generateContent with the text input
val response = model.generateContent(prompt)
print(response.text)
Java
Вы можете вызвать generateContent() для генерации текста из текстового поля ввода.
ListenableFuture .
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI())
.generativeModel("gemini-2.5-flash");
// Use the GenerativeModelFutures Java compatibility layer which offers
// support for ListenableFuture and Publisher APIs
GenerativeModelFutures model = GenerativeModelFutures.from(ai);
// Provide a prompt that contains text
Content prompt = new Content.Builder()
.addText("Write a story about a magic backpack.")
.build();
// To generate text output, call generateContent with the text input
ListenableFuture<GenerateContentResponse> response = model.generateContent(prompt);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
@Override
public void onSuccess(GenerateContentResponse result) {
String resultText = result.getText();
System.out.println(resultText);
}
@Override
public void onFailure(Throwable t) {
t.printStackTrace();
}
}, executor);
Web
Вы можете вызвать generateContent() для генерации текста из текстового поля ввода.
import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend } from "firebase/ai";
// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
// ...
};
// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);
// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });
// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, { model: "gemini-2.5-flash" });
// Wrap in an async function so you can use await
async function run() {
// Provide a prompt that contains text
const prompt = "Write a story about a magic backpack."
// To generate text output, call generateContent with the text input
const result = await model.generateContent(prompt);
const response = result.response;
const text = response.text();
console.log(text);
}
run();
Dart
Вы можете вызвать generateContent() для генерации текста из текстового поля ввода.
import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';
// Initialize FirebaseApp
await Firebase.initializeApp(
options: DefaultFirebaseOptions.currentPlatform,
);
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
final model =
FirebaseAI.googleAI().generativeModel(model: 'gemini-2.5-flash');
// Provide a prompt that contains text
final prompt = [Content.text('Write a story about a magic backpack.')];
// To generate text output, call generateContent with the text input
final response = await model.generateContent(prompt);
print(response.text);
Единство
Вы можете вызвать GenerateContentAsync() для генерации текста из текстового поля ввода.
using Firebase;
using Firebase.AI;
// Initialize the Gemini Developer API backend service
var ai = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI());
// Create a `GenerativeModel` instance with a model that supports your use case
var model = ai.GetGenerativeModel(modelName: "gemini-2.5-flash");
// Provide a prompt that contains text
var prompt = "Write a story about a magic backpack.";
// To generate text output, call GenerateContentAsync with the text input
var response = await model.GenerateContentAsync(prompt);
UnityEngine.Debug.Log(response.Text ?? "No text in response.");
Узнайте, как выбрать модель.подходит для вашего сценария использования и приложения.
Генерация текста из текстового и файлового (мультимодального) ввода
| Прежде чем опробовать этот пример, выполните раздел «Перед началом работы » этого руководства, чтобы настроить свой проект и приложение. В этом разделе вам также нужно будет нажать кнопку для выбранного вами поставщика API Gemini , чтобы увидеть на этой странице контент, относящийся к данному поставщику . |
Вы можете попросить модель Gemini сгенерировать текст, указав текст и файл — при этом необходимо указать mimeType каждого входного файла и сам файл. Требования и рекомендации к входным файлам вы найдете далее на этой странице.
В следующем примере показаны основные принципы генерации текста из входного файла путем анализа одного видеофайла, предоставленного в виде встроенных данных (файл, закодированный в base64).
Обратите внимание, что в этом примере показано, как указать файл непосредственно в видео, но SDK также поддерживают указание URL-адреса YouTube .Вы можете использовать этот общедоступный файл с MIME-типом
video/mp4( просмотреть или скачать файл ).https://storage.googleapis.com/cloud-samples-data/video/animals.mp4
Быстрый
Вы можете вызвать generateContent() для генерации текста из мультимодального ввода текстовых и видеофайлов.
import FirebaseAILogic
// Initialize the Gemini Developer API backend service
let ai = FirebaseAI.firebaseAI(backend: .googleAI())
// Create a `GenerativeModel` instance with a model that supports your use case
let model = ai.generativeModel(modelName: "gemini-2.5-flash")
// Provide the video as `Data` with the appropriate MIME type.
let video = InlineDataPart(data: try Data(contentsOf: videoURL), mimeType: "video/mp4")
// Provide a text prompt to include with the video
let prompt = "What is in the video?"
// To generate text output, call generateContent with the text and video
let response = try await model.generateContent(video, prompt)
print(response.text ?? "No text in response.")
Kotlin
Вы можете вызвать generateContent() для генерации текста из мультимодального ввода текстовых и видеофайлов.
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
val model = Firebase.ai(backend = GenerativeBackend.googleAI())
.generativeModel("gemini-2.5-flash")
val contentResolver = applicationContext.contentResolver
contentResolver.openInputStream(videoUri).use { stream ->
stream?.let {
val bytes = stream.readBytes()
// Provide a prompt that includes the video specified above and text
val prompt = content {
inlineData(bytes, "video/mp4")
text("What is in the video?")
}
// To generate text output, call generateContent with the prompt
val response = model.generateContent(prompt)
Log.d(TAG, response.text ?: "")
}
}
Java
Вы можете вызвать generateContent() для генерации текста из мультимодального ввода текстовых и видеофайлов.
ListenableFuture .
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI())
.generativeModel("gemini-2.5-flash");
// Use the GenerativeModelFutures Java compatibility layer which offers
// support for ListenableFuture and Publisher APIs
GenerativeModelFutures model = GenerativeModelFutures.from(ai);
ContentResolver resolver = getApplicationContext().getContentResolver();
try (InputStream stream = resolver.openInputStream(videoUri)) {
File videoFile = new File(new URI(videoUri.toString()));
int videoSize = (int) videoFile.length();
byte[] videoBytes = new byte[videoSize];
if (stream != null) {
stream.read(videoBytes, 0, videoBytes.length);
stream.close();
// Provide a prompt that includes the video specified above and text
Content prompt = new Content.Builder()
.addInlineData(videoBytes, "video/mp4")
.addText("What is in the video?")
.build();
// To generate text output, call generateContent with the prompt
ListenableFuture<GenerateContentResponse> response = model.generateContent(prompt);
Futures.addCallback(response, new FutureCallback<GenerateContentResponse>() {
@Override
public void onSuccess(GenerateContentResponse result) {
String resultText = result.getText();
System.out.println(resultText);
}
@Override
public void onFailure(Throwable t) {
t.printStackTrace();
}
}, executor);
}
} catch (IOException e) {
e.printStackTrace();
} catch (URISyntaxException e) {
e.printStackTrace();
}
Web
Вы можете вызвать generateContent() для генерации текста из мультимодального ввода текстовых и видеофайлов.
import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend } from "firebase/ai";
// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
// ...
};
// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);
// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });
// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, { model: "gemini-2.5-flash" });
// Converts a File object to a Part object.
async function fileToGenerativePart(file) {
const base64EncodedDataPromise = new Promise((resolve) => {
const reader = new FileReader();
reader.onloadend = () => resolve(reader.result.split(',')[1]);
reader.readAsDataURL(file);
});
return {
inlineData: { data: await base64EncodedDataPromise, mimeType: file.type },
};
}
async function run() {
// Provide a text prompt to include with the video
const prompt = "What do you see?";
const fileInputEl = document.querySelector("input[type=file]");
const videoPart = await fileToGenerativePart(fileInputEl.files[0]);
// To generate text output, call generateContent with the text and video
const result = await model.generateContent([prompt, videoPart]);
const response = result.response;
const text = response.text();
console.log(text);
}
run();
Dart
Вы можете вызвать generateContent() для генерации текста из мультимодального ввода текстовых и видеофайлов.
import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';
// Initialize FirebaseApp
await Firebase.initializeApp(
options: DefaultFirebaseOptions.currentPlatform,
);
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
final model =
FirebaseAI.googleAI().generativeModel(model: 'gemini-2.5-flash');
// Provide a text prompt to include with the video
final prompt = TextPart("What's in the video?");
// Prepare video for input
final video = await File('video0.mp4').readAsBytes();
// Provide the video as `Data` with the appropriate mimetype
final videoPart = InlineDataPart('video/mp4', video);
// To generate text output, call generateContent with the text and images
final response = await model.generateContent([
Content.multi([prompt, ...videoPart])
]);
print(response.text);
Единство
Вы можете вызвать GenerateContentAsync() для генерации текста из многомодального ввода текстовых и видеофайлов.
using Firebase;
using Firebase.AI;
// Initialize the Gemini Developer API backend service
var ai = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI());
// Create a `GenerativeModel` instance with a model that supports your use case
var model = ai.GetGenerativeModel(modelName: "gemini-2.5-flash");
// Provide the video as `data` with the appropriate MIME type.
var video = ModelContent.InlineData("video/mp4",
System.IO.File.ReadAllBytes(System.IO.Path.Combine(
UnityEngine.Application.streamingAssetsPath, "yourVideo.mp4")));
// Provide a text prompt to include with the video
var prompt = ModelContent.Text("What is in the video?");
// To generate text output, call GenerateContentAsync with the text and video
var response = await model.GenerateContentAsync(new [] { video, prompt });
UnityEngine.Debug.Log(response.Text ?? "No text in response.");
Узнайте, как выбрать модель.подходит для вашего сценария использования и приложения.
Трансляция ответа
| Прежде чем опробовать этот пример, выполните раздел «Перед началом работы » этого руководства, чтобы настроить свой проект и приложение. В этом разделе вам также нужно будет нажать кнопку для выбранного вами поставщика API Gemini , чтобы увидеть на этой странице контент, относящийся к данному поставщику . |
Для ускорения взаимодействия можно не ждать полного результата генерации модели, а использовать потоковую обработку для частичного получения результатов. Для потоковой передачи ответа вызовите generateContentStream .
Быстрый
Вы можете вызвать generateContentStream() для потоковой передачи сгенерированного текста из текстового поля ввода.
import FirebaseAILogic
// Initialize the Gemini Developer API backend service
let ai = FirebaseAI.firebaseAI(backend: .googleAI())
// Create a `GenerativeModel` instance with a model that supports your use case
let model = ai.generativeModel(modelName: "gemini-2.5-flash")
// Provide a prompt that contains text
let prompt = "Write a story about a magic backpack."
// To stream generated text output, call generateContentStream with the text input
let contentStream = try model.generateContentStream(prompt)
for try await chunk in contentStream {
if let text = chunk.text {
print(text)
}
}
Kotlin
Вы можете вызвать generateContentStream() для потоковой передачи сгенерированного текста из текстового поля ввода.
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
val model = Firebase.ai(backend = GenerativeBackend.googleAI())
.generativeModel("gemini-2.5-flash")
// Provide a prompt that includes only text
val prompt = "Write a story about a magic backpack."
// To stream generated text output, call generateContentStream and pass in the prompt
var response = ""
model.generateContentStream(prompt).collect { chunk ->
print(chunk.text)
response += chunk.text
}
Java
Вы можете вызвать generateContentStream() для потоковой передачи сгенерированного текста из текстового поля ввода.
Publisher из библиотеки Reactive Streams .
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI())
.generativeModel("gemini-2.5-flash");
// Use the GenerativeModelFutures Java compatibility layer which offers
// support for ListenableFuture and Publisher APIs
GenerativeModelFutures model = GenerativeModelFutures.from(ai);
// Provide a prompt that contains text
Content prompt = new Content.Builder()
.addText("Write a story about a magic backpack.")
.build();
// To stream generated text output, call generateContentStream with the text input
Publisher<GenerateContentResponse> streamingResponse =
model.generateContentStream(prompt);
// Subscribe to partial results from the response
final String[] fullResponse = {""};
streamingResponse.subscribe(new Subscriber<GenerateContentResponse>() {
@Override
public void onNext(GenerateContentResponse generateContentResponse) {
String chunk = generateContentResponse.getText();
fullResponse[0] += chunk;
}
@Override
public void onComplete() {
System.out.println(fullResponse[0]);
}
@Override
public void onError(Throwable t) {
t.printStackTrace();
}
@Override
public void onSubscribe(Subscription s) { }
});
Web
Вы можете вызвать generateContentStream() для потоковой передачи сгенерированного текста из текстового поля ввода.
import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend } from "firebase/ai";
// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
// ...
};
// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);
// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });
// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, { model: "gemini-2.5-flash" });
// Wrap in an async function so you can use await
async function run() {
// Provide a prompt that contains text
const prompt = "Write a story about a magic backpack."
// To stream generated text output, call generateContentStream with the text input
const result = await model.generateContentStream(prompt);
for await (const chunk of result.stream) {
const chunkText = chunk.text();
console.log(chunkText);
}
console.log('aggregated response: ', await result.response);
}
run();
Dart
Вы можете вызвать generateContentStream() для потоковой передачи сгенерированного текста из текстового поля ввода.
import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';
// Initialize FirebaseApp
await Firebase.initializeApp(
options: DefaultFirebaseOptions.currentPlatform,
);
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
final model =
FirebaseAI.googleAI().generativeModel(model: 'gemini-2.5-flash');
// Provide a prompt that contains text
final prompt = [Content.text('Write a story about a magic backpack.')];
// To stream generated text output, call generateContentStream with the text input
final response = model.generateContentStream(prompt);
await for (final chunk in response) {
print(chunk.text);
}
Единство
Вы можете вызвать GenerateContentStreamAsync() для потоковой передачи сгенерированного текста из текстового поля ввода.
using Firebase;
using Firebase.AI;
// Initialize the Gemini Developer API backend service
var ai = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI());
// Create a `GenerativeModel` instance with a model that supports your use case
var model = ai.GetGenerativeModel(modelName: "gemini-2.5-flash");
// Provide a prompt that contains text
var prompt = "Write a story about a magic backpack.";
// To stream generated text output, call GenerateContentStreamAsync with the text input
var responseStream = model.GenerateContentStreamAsync(prompt);
await foreach (var response in responseStream) {
if (!string.IsNullOrWhiteSpace(response.Text)) {
UnityEngine.Debug.Log(response.Text);
}
}
Узнайте, как выбрать модель.подходит для вашего сценария использования и приложения.
Быстрый
Вы можете вызвать generateContentStream() для потоковой передачи сгенерированного текста из многомодального ввода, включающего текст и одно видео.
import FirebaseAILogic
// Initialize the Gemini Developer API backend service
let ai = FirebaseAI.firebaseAI(backend: .googleAI())
// Create a `GenerativeModel` instance with a model that supports your use case
let model = ai.generativeModel(modelName: "gemini-2.5-flash")
// Provide the video as `Data` with the appropriate MIME type
let video = InlineDataPart(data: try Data(contentsOf: videoURL), mimeType: "video/mp4")
// Provide a text prompt to include with the video
let prompt = "What is in the video?"
// To stream generated text output, call generateContentStream with the text and video
let contentStream = try model.generateContentStream(video, prompt)
for try await chunk in contentStream {
if let text = chunk.text {
print(text)
}
}
Kotlin
Вы можете вызвать generateContentStream() для потоковой передачи сгенерированного текста из многомодального ввода, включающего текст и одно видео.
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
val model = Firebase.ai(backend = GenerativeBackend.googleAI())
.generativeModel("gemini-2.5-flash")
val contentResolver = applicationContext.contentResolver
contentResolver.openInputStream(videoUri).use { stream ->
stream?.let {
val bytes = stream.readBytes()
// Provide a prompt that includes the video specified above and text
val prompt = content {
inlineData(bytes, "video/mp4")
text("What is in the video?")
}
// To stream generated text output, call generateContentStream with the prompt
var fullResponse = ""
model.generateContentStream(prompt).collect { chunk ->
Log.d(TAG, chunk.text ?: "")
fullResponse += chunk.text
}
}
}
Java
Вы можете вызвать generateContentStream() для потоковой передачи сгенерированного текста из многомодального ввода, включающего текст и одно видео.
Publisher из библиотеки Reactive Streams .
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
GenerativeModel ai = FirebaseAI.getInstance(GenerativeBackend.googleAI())
.generativeModel("gemini-2.5-flash");
// Use the GenerativeModelFutures Java compatibility layer which offers
// support for ListenableFuture and Publisher APIs
GenerativeModelFutures model = GenerativeModelFutures.from(ai);
ContentResolver resolver = getApplicationContext().getContentResolver();
try (InputStream stream = resolver.openInputStream(videoUri)) {
File videoFile = new File(new URI(videoUri.toString()));
int videoSize = (int) videoFile.length();
byte[] videoBytes = new byte[videoSize];
if (stream != null) {
stream.read(videoBytes, 0, videoBytes.length);
stream.close();
// Provide a prompt that includes the video specified above and text
Content prompt = new Content.Builder()
.addInlineData(videoBytes, "video/mp4")
.addText("What is in the video?")
.build();
// To stream generated text output, call generateContentStream with the prompt
Publisher<GenerateContentResponse> streamingResponse =
model.generateContentStream(prompt);
final String[] fullResponse = {""};
streamingResponse.subscribe(new Subscriber<GenerateContentResponse>() {
@Override
public void onNext(GenerateContentResponse generateContentResponse) {
String chunk = generateContentResponse.getText();
fullResponse[0] += chunk;
}
@Override
public void onComplete() {
System.out.println(fullResponse[0]);
}
@Override
public void onError(Throwable t) {
t.printStackTrace();
}
@Override
public void onSubscribe(Subscription s) {
}
});
}
} catch (IOException e) {
e.printStackTrace();
} catch (URISyntaxException e) {
e.printStackTrace();
}
Web
Вы можете вызвать generateContentStream() для потоковой передачи сгенерированного текста из многомодального ввода, включающего текст и одно видео.
import { initializeApp } from "firebase/app";
import { getAI, getGenerativeModel, GoogleAIBackend } from "firebase/ai";
// TODO(developer) Replace the following with your app's Firebase configuration
// See: https://firebase.google.com/docs/web/learn-more#config-object
const firebaseConfig = {
// ...
};
// Initialize FirebaseApp
const firebaseApp = initializeApp(firebaseConfig);
// Initialize the Gemini Developer API backend service
const ai = getAI(firebaseApp, { backend: new GoogleAIBackend() });
// Create a `GenerativeModel` instance with a model that supports your use case
const model = getGenerativeModel(ai, { model: "gemini-2.5-flash" });
// Converts a File object to a Part object.
async function fileToGenerativePart(file) {
const base64EncodedDataPromise = new Promise((resolve) => {
const reader = new FileReader();
reader.onloadend = () => resolve(reader.result.split(',')[1]);
reader.readAsDataURL(file);
});
return {
inlineData: { data: await base64EncodedDataPromise, mimeType: file.type },
};
}
async function run() {
// Provide a text prompt to include with the video
const prompt = "What do you see?";
const fileInputEl = document.querySelector("input[type=file]");
const videoPart = await fileToGenerativePart(fileInputEl.files[0]);
// To stream generated text output, call generateContentStream with the text and video
const result = await model.generateContentStream([prompt, videoPart]);
for await (const chunk of result.stream) {
const chunkText = chunk.text();
console.log(chunkText);
}
}
run();
Dart
Вы можете вызвать generateContentStream() для потоковой передачи сгенерированного текста из многомодального ввода, включающего текст и одно видео.
import 'package:firebase_ai/firebase_ai.dart';
import 'package:firebase_core/firebase_core.dart';
import 'firebase_options.dart';
// Initialize FirebaseApp
await Firebase.initializeApp(
options: DefaultFirebaseOptions.currentPlatform,
);
// Initialize the Gemini Developer API backend service
// Create a `GenerativeModel` instance with a model that supports your use case
final model =
FirebaseAI.googleAI().generativeModel(model: 'gemini-2.5-flash');
// Provide a text prompt to include with the video
final prompt = TextPart("What's in the video?");
// Prepare video for input
final video = await File('video0.mp4').readAsBytes();
// Provide the video as `Data` with the appropriate mimetype
final videoPart = InlineDataPart('video/mp4', video);
// To stream generated text output, call generateContentStream with the text and image
final response = await model.generateContentStream([
Content.multi([prompt,videoPart])
]);
await for (final chunk in response) {
print(chunk.text);
}
Единство
Вы можете вызвать функцию GenerateContentStreamAsync() для потоковой передачи сгенерированного текста из многомодального ввода, включающего текст и одно видео.
using Firebase;
using Firebase.AI;
// Initialize the Gemini Developer API backend service
var ai = FirebaseAI.GetInstance(FirebaseAI.Backend.GoogleAI());
// Create a `GenerativeModel` instance with a model that supports your use case
var model = ai.GetGenerativeModel(modelName: "gemini-2.5-flash");
// Provide the video as `data` with the appropriate MIME type.
var video = ModelContent.InlineData("video/mp4",
System.IO.File.ReadAllBytes(System.IO.Path.Combine(
UnityEngine.Application.streamingAssetsPath, "yourVideo.mp4")));
// Provide a text prompt to include with the video
var prompt = ModelContent.Text("What is in the video?");
// To stream generated text output, call GenerateContentStreamAsync with the text and video
var responseStream = model.GenerateContentStreamAsync(new [] { video, prompt });
await foreach (var response in responseStream) {
if (!string.IsNullOrWhiteSpace(response.Text)) {
UnityEngine.Debug.Log(response.Text);
}
}
Узнайте, как выбрать модель.подходит для вашего сценария использования и приложения.
Требования и рекомендации к входным файлам изображений.
Обратите внимание, что файл, предоставленный в виде встроенных данных, кодируется в base64 во время передачи, что увеличивает размер запроса. В случае слишком большого размера запроса вы получите ошибку HTTP 413.
Подробную информацию о следующих параметрах см. в разделе «Поддерживаемые входные файлы и требования для API Vertex AI Gemini» :
- Различные варианты предоставления файла в запросе (либо непосредственно в запросе, либо с использованием URL-адреса или URI файла).
- Поддерживаемые типы файлов
- Поддерживаемые типы MIME и способы их указания.
- Требования и лучшие практики для обработки файлов и мультимодальных запросов.
Что еще можно сделать?
- Научитесь подсчитывать токены, прежде чем отправлять модели длинные запросы.
- Настройте Cloud Storage for Firebase , чтобы включать большие файлы в ваши многомодальные запросы и иметь более управляемое решение для предоставления файлов в подсказках. Файлы могут включать изображения, PDF-файлы, видео и аудио.
- Начните думать о подготовке к производству (см. контрольный список для производства ), включая:
- Настройка Firebase App Check для защиты API Gemini от неправомерного использования неавторизованными клиентами.
- Интеграция Firebase Remote Config для обновления значений в вашем приложении (например, имени модели) без выпуска новой версии приложения.
Попробуйте другие возможности.
- Создавайте многоэтапные диалоги (чат) .
- Генерация текста на основе текстовых подсказок .
- Генерируйте структурированный вывод (например, в формате JSON) как из текстовых, так и из мультимодальных запросов.
- Создавайте изображения на основе текстовых подсказок ( Gemini или Imagen ).
- Осуществляйте потоковую передачу входного и выходного сигнала (включая звук) с помощью Gemini Live API .
- Используйте инструменты (например, вызов функций и привязку к Google Search ), чтобы связать модель Gemini с другими частями вашего приложения, а также с внешними системами и информацией.
Узнайте, как управлять генерацией контента.
- Разберитесь в разработке подсказок для заданий , включая лучшие практики, стратегии и примеры подсказок.
- Настройте параметры модели , такие как температура и максимальное количество выходных токенов (для Gemini ) или соотношение сторон и генерация людей (для Imagen ).
- Используйте настройки безопасности , чтобы скорректировать вероятность получения ответов, которые могут быть сочтены вредными.
Узнайте больше о поддерживаемых моделях
Узнайте о моделях, доступных для различных вариантов использования , а также об их квотах и ценах .Оставьте отзыв о вашем опыте использования Firebase AI Logic.