Помимо просмотра данных экспериментов A/B Testing в консоли Firebase , вы можете проверять и анализировать данные экспериментов в BigQuery . Хотя A/B Testing не имеет отдельной таблицы BigQuery , участие в экспериментах и вариантах сохраняется для каждого события Google Analytics в таблицах событий Analytics .
Свойства пользователя, содержащие информацию об эксперименте, имеют форму userProperty.key like "firebase_exp_%"
или userProperty.key = "firebase_exp_01"
, где 01
— это идентификатор эксперимента, а userProperty.value.string_value
содержит индекс (отсчитываемый от нуля). вариант эксперимента.
Эти свойства пользователя эксперимента можно использовать для извлечения данных эксперимента. Это дает вам возможность различными способами анализировать результаты экспериментов и независимо проверять результаты A/B Testing .
Для начала выполните следующие действия, как описано в этом руководстве:
- Включите экспорт BigQuery для Google Analytics в консоли Firebase.
- Доступ к данным A/B Testing с помощью BigQuery
- Изучите примеры запросов
Включите экспорт BigQuery для Google Analytics в консоли Firebase.
Если вы используете план Spark, вы можете использовать песочницу BigQuery для бесплатного доступа к BigQuery с учетом ограничений песочницы . Дополнительную информацию см. в разделе «Цены и песочница BigQuery .
Сначала убедитесь, что вы экспортируете данные Analytics в BigQuery :
- Откройте вкладку «Интеграции» , доступ к которой можно получить, выбрав > «Настройки проекта» в консоли Firebase .
- Если вы уже используете BigQuery с другими сервисами Firebase, нажмите «Управление» . В противном случае нажмите «Ссылка» .
- Прочтите статью «О связывании Firebase с BigQuery , затем нажмите «Далее» .
- В разделе «Настроить интеграцию» включите переключатель Google Analytics .
Выберите регион и выберите настройки экспорта.
Нажмите «Ссылка на BigQuery .
В зависимости от того, как вы решили экспортировать данные, до того, как таблицы станут доступны, может пройти до одного дня. Дополнительную информацию об экспорте данных проекта в BigQuery см. в разделе Экспорт данных проекта в BigQuery .
Доступ к данным A/B Testing в BigQuery
Прежде чем запрашивать данные для конкретного эксперимента, вам необходимо получить некоторые или все из следующих данных для использования в вашем запросе:
- Идентификатор эксперимента: его можно получить по URL-адресу страницы обзора эксперимента . Например, если ваш URL-адрес выглядит как
https://console.firebase.google.com/project/my_firebase_project/config/experiment/results/25
, идентификатор эксперимента — 25 . - Идентификатор ресурса Google Analytics : это ваш 9-значный идентификатор ресурса Google Analytics . Вы можете найти это в Google Analytics ; он также появляется в BigQuery , когда вы расширяете имя проекта, чтобы отобразить имя вашей таблицы событий Google Analytics (
project_name.analytics_000000000.events
). - Дата эксперимента. Чтобы составить более быстрый и эффективный запрос, рекомендуется ограничивать запросы разделами таблицы ежедневных событий Google Analytics , которые содержат данные эксперимента — таблицы, идентифицированные суффиксом
YYYYMMDD
. Итак, если ваш эксперимент проводился со 2 февраля 2024 г. по 2 мая 2024 г., вы должны указать_TABLE_SUFFIX between '20240202' AND '20240502'
. Пример см. в разделе Выбор значений конкретного эксперимента . - Названия событий. Обычно они соответствуют целевым показателям , которые вы настроили в эксперименте. Например, события
in_app_purchase
,ad_impression
илиuser_retention
.
После того, как вы соберете информацию, необходимую для создания запроса:
- Откройте BigQuery в консоли Google Cloud .
- Выберите свой проект, затем выберите «Создать SQL-запрос» .
- Добавьте свой запрос. Примеры запросов для выполнения см. в разделе Изучение примеров запросов .
- Нажмите «Выполнить» .
Запросите данные эксперимента с помощью автоматически созданного запроса консоли Firebase.
Если вы используете план Blaze, на странице обзора эксперимента представлен пример запроса, который возвращает имя эксперимента, варианты, имена событий и количество событий для эксперимента, который вы просматриваете.
Чтобы получить и запустить автоматически созданный запрос:
- В консоли Firebase откройте A/B Testing и выберите эксперимент A/B Testing который вы хотите запросить, чтобы открыть обзор эксперимента .
- В меню «Параметры» в разделе «Интеграция BigQuery выберите «Запросить данные эксперимента» . Откроется ваш проект в BigQuery в консоли консоли Google Cloud и будет предоставлен базовый запрос, который вы можете использовать для запроса данных эксперимента.
В следующем примере показан сгенерированный запрос для эксперимента с тремя вариантами (включая базовый вариант) под названием «Эксперимент приветствия зимы». Он возвращает имя активного эксперимента, имя варианта, уникальное событие и количество событий для каждого события. Обратите внимание, что построитель запросов не указывает имя вашего проекта в имени таблицы, поскольку она открывается непосредственно внутри вашего проекта.
/*
This query is auto-generated by Firebase A/B Testing for your
experiment "Winter welcome experiment".
It demonstrates how you can get event counts for all Analytics
events logged by each variant of this experiment's population.
*/
SELECT
'Winter welcome experiment' AS experimentName,
CASE userProperty.value.string_value
WHEN '0' THEN 'Baseline'
WHEN '1' THEN 'Welcome message (1)'
WHEN '2' THEN 'Welcome message (2)'
END AS experimentVariant,
event_name AS eventName,
COUNT(*) AS count
FROM
`analytics_000000000.events_*`,
UNNEST(user_properties) AS userProperty
WHERE
(_TABLE_SUFFIX BETWEEN '20240202' AND '20240502')
AND userProperty.key = 'firebase_exp_25'
GROUP BY
experimentVariant, eventName
Дополнительные примеры запросов см. в разделе Изучение примеров запросов .
Изучите примеры запросов
В следующих разделах представлены примеры запросов, которые можно использовать для извлечения данных экспериментов A/B Testing из таблиц событий Google Analytics .
Извлеките значения стандартного отклонения покупок и экспериментов из всех экспериментов.
Вы можете использовать данные результатов эксперимента для независимой проверки результатов Firebase A/B Testing . Следующий оператор SQL BigQuery извлекает варианты эксперимента, количество уникальных пользователей в каждом варианте, а также суммирует общий доход от событий in_app_purchase
и ecommerce_purchase
, а также стандартные отклонения для всех экспериментов в диапазоне времени, указанном в качестве дат начала и окончания _TABLE_SUFFIX
. Вы можете использовать данные, полученные из этого запроса, с генератором статистической значимости для односторонних t-тестов, чтобы убедиться, что результаты, предоставляемые Firebase, соответствуют вашему собственному анализу.
Дополнительные сведения о том, как A/B Testing вычисляет логические выводы, см. в разделе Интерпретация результатов теста .
/*
This query returns all experiment variants, number of unique users,
the average USD spent per user, and the standard deviation for all
experiments within the date range specified for _TABLE_SUFFIX.
*/
SELECT
experimentNumber,
experimentVariant,
COUNT(*) AS unique_users,
AVG(usd_value) AS usd_value_per_user,
STDDEV(usd_value) AS std_dev
FROM
(
SELECT
userProperty.key AS experimentNumber,
userProperty.value.string_value AS experimentVariant,
user_pseudo_id,
SUM(
CASE
WHEN event_name IN ('in_app_purchase', 'ecommerce_purchase')
THEN event_value_in_usd
ELSE 0
END) AS usd_value
FROM `PROJECT_NAME.analytics_ANALYTICS_ID.events_*`
CROSS JOIN UNNEST(user_properties) AS userProperty
WHERE
userProperty.key LIKE 'firebase_exp_%'
AND event_name IN ('in_app_purchase', 'ecommerce_purchase')
AND (_TABLE_SUFFIX BETWEEN 'YYYYMMDD' AND 'YYYMMDD')
GROUP BY 1, 2, 3
)
GROUP BY 1, 2
ORDER BY 1, 2;
Выберите значения конкретного эксперимента
В следующем примере запроса показано, как получить данные для конкретного эксперимента в BigQuery . Этот пример запроса возвращает имя эксперимента, имена вариантов (включая базовые), имена событий и количество событий.
SELECT
'EXPERIMENT_NAME' AS experimentName,
CASE userProperty.value.string_value
WHEN '0' THEN 'Baseline'
WHEN '1' THEN 'VARIANT_1_NAME'
WHEN '2' THEN 'VARIANT_2_NAME'
END AS experimentVariant,
event_name AS eventName,
COUNT(*) AS count
FROM
`analytics_ANALYTICS_PROPERTY.events_*`,
UNNEST(user_properties) AS userProperty
WHERE
(_TABLE_SUFFIX BETWEEN 'YYYMMDD' AND 'YYYMMDD')
AND userProperty.key = 'firebase_exp_EXPERIMENT_NUMBER'
GROUP BY
experimentVariant, eventName