אפשר לייצא את נתוני Firebase Crashlytics אל BigQuery לצורך ניתוח נוסף. BigQuery מאפשר לנתח את הנתונים באמצעות BigQuery SQL, לייצא אותם לספק ענן אחר ולהשתמש בהם להצגה חזותית וליצירת מרכזי בקרה בהתאמה אישית באמצעות Google Data Studio.
הפעלת הייצוא אל BigQuery
במסוף Firebase, נכנסים לדף Integrations.
בכרטיס BigQuery, לוחצים על קישור.
פועלים לפי ההוראות במסך כדי להפעיל את הייצוא אל BigQuery.
אם אתם רוצים גישה כמעט בזמן אמת לנתוני Crashlytics ב-BigQuery, כדאי לשדרג לייצוא בסטרימינג.
מה קורה כשמפעילים את הייצוא?
בוחרים את המיקום של מערך הנתונים. אי אפשר לשנות את המיקום אחרי שיוצרים את מערך הנתונים, אבל אפשר להעתיק את מערך הנתונים למיקום אחר או להעביר אותו ידנית למיקום אחר (וליצור אותו מחדש). למידע נוסף, ראו שינוי המיקום של פעולות ייצוא קיימות.
המיקום הזה רלוונטי רק לנתונים שיוצאו אל BigQuery, והוא לא משפיע על המיקום של הנתונים שנשמרים לשימוש בלוח הבקרה Crashlytics במסוף Firebase או ב-Android Studio.
כברירת מחדל, כל האפליקציות בפרויקט מקושרות אל BigQuery וכל האפליקציות שתוסיפו לפרויקט במועד מאוחר יותר יקושרו באופן אוטומטי אל BigQuery. אתם יכולים לקבוע אילו אפליקציות ישלחו נתונים.
מערכת Firebase מגדירה סנכרון יומי של הנתונים שלכם אל BigQuery.
אחרי שמקשרים את הפרויקט, בדרך כלל צריך לחכות עד לסנכרון של היום הבא כדי שקבוצת הנתונים הראשונה תוצג ב-BigQuery.
הסנכרון היומי מתבצע פעם ביום, ללא קשר לייצוא מתוזמן שייתכן שהגדרתם ב-BigQuery. חשוב לזכור שהתזמון והמשך של משימת הסנכרון עשויים להשתנות, לכן לא מומלץ לתזמן פעולות או משימות במורד הזרם על סמך תזמון ספציפי של הייצוא.
מערכת Firebase מייצאת עותק של הנתונים הקיימים אל BigQuery. ההפצה הראשונית של הנתונים לייצוא עשויה להימשך עד 48 שעות.
הייצוא כולל לכל אפליקציה מקושרת טבלה עם הנתונים מהסנכרון היומי.
אתם יכולים לתזמן באופן ידני מילוי חוסרים של נתונים לטבלת האצווה עד 30 הימים האחרונים או עד לתאריך האחרון שבו הפעלתם את הייצוא אל BigQuery (התאריך האחרון מביניהם).
לתשומת ליבכם: אם הפעלתם את הייצוא של נתוני Crashlytics לפני אמצע אוקטובר 2024, תוכלו גם למלא את החוסרים בנתונים מ-30 הימים שלפני היום שבו הפעלתם את הייצוא.
אם מפעילים את הייצוא בסטרימינג של Crashlytics אל BigQuery, לכל האפליקציות המקושרות תהיה גם טבלה בזמן אמת שמכילה נתונים שמתעדכנים כל הזמן.
כדי להשבית את הייצוא אל BigQuery, צריך לבטל את הקישור של הפרויקט במסוף Firebase.
אילו נתונים מיוצאים אל BigQuery?
נתוני Firebase Crashlytics מיוצאים למערך נתונים BigQuery בשם firebase_crashlytics
. כברירת מחדל, טבלאות נפרדות ייוצרו בתוך מערך הנתונים Crashlytics לכל אפליקציה בפרויקט. מערכת Firebase נותנת לשמות הטבלאות שמות על סמך המזהה של האפליקציה, תוך המרה של הנקודות לקוויות תחתונות והוספת שם הפלטפורמה בסוף.
לדוגמה, נתונים של אפליקציה ל-Android עם שם החבילה com.google.test
יופיעו בטבלה בשם com_google_test_ANDROID
. טבלת האצווה הזו מתעדכנת פעם ביום. אם מפעילים את הייצוא בסטרימינג של Crashlytics אל BigQuery, הנתונים של Crashlytics ישודרו גם בסטרימינג בזמן אמת לטבלה בשם com_google_test_ANDROID_REALTIME
.
כל שורה בטבלה מייצגת אירוע שהתרחש באפליקציה, כולל קריסות, שגיאות לא קטלניות ומקרי ANR.
ייצוא בסטרימינג של Crashlytics אל BigQuery
אפשר לשדר את הנתונים של Crashlytics בזמן אמת באמצעות סטרימינג של BigQuery. אפשר להשתמש בו לכל מטרה שדורשת נתונים בזמן אמת, כמו הצגת מידע בלוח בקרה בזמן אמת, צפייה בהשקה בזמן אמת או מעקב אחרי בעיות באפליקציה שמפעילות התראות ותהליכי עבודה מותאמים אישית.
כשמפעילים ייצוא בסטרימינג של Crashlytics אל BigQuery, בנוסף לטבלת האצווה תהיה לכם גם טבלה בזמן אמת. אלה ההבדלים שצריך להיות מודעים להם בין הטבלאות:
טבלת אצווה | טבלה בזמן אמת |
---|---|
|
|
טבלת האצווה אידיאלית לניתוח לטווח ארוך ולזיהוי מגמות לאורך זמן, כי אנחנו מאחסנים את האירועים באופן עמיד לפני שאנחנו כותבים אותם, ואפשר למלא את הטבלה בנתונים חסרים למשך עד 30 יום*. כשאנחנו כותבים נתונים לטבלה בזמן אמת, אנחנו כותבים אותם מיד אל BigQuery, ולכן היא אידיאלית למרכזי בקרה פעילים ולהתראות מותאמות אישית. אפשר לשלב את שתי הטבלאות עם שאילתת סטיצ'ינג כדי ליהנות מהיתרונות של שתיהן.
כברירת מחדל, מועד התפוגה של המחיצות בטבלה 'זמן אמת' הוא 30 יום. במאמר הגדרת התוקף של מחיצה במסמכי העזרה של BigQuery מוסבר איך לשנות את התוקף.
* פרטים על תמיכה במילוי חוסרים מופיעים במאמר שדרוג לתשתית הייצוא החדשה.
הפעלת ייצוא סטרימינג של Crashlytics אל BigQuery
נכנסים לדף Integrations במסוף Firebase.
בכרטיס BigQuery, לוחצים על Manage (ניהול).
מסמנים את התיבה Include streaming (הכללת סטרימינג).
הפעולה הזו מפעילה סטרימינג לכל האפליקציות המקושרות.
מה אפשר לעשות עם הנתונים המיוצאים?
הייצוא אל BigQuery כולל נתוני קריסה גולמיים, כולל סוג המכשיר, מערכת ההפעלה, חריגים (אפליקציות ל-Android) או שגיאות (אפליקציות של Apple) ויומני Crashlytics, וגם נתונים אחרים.
בהמשך הדף מוסבר בדיוק אילו נתונים של Crashlytics מיוצאים ואילו סכמות של טבלאות הן רלוונטיות.
שימוש בתבנית של Data Studio
כדי להפעיל נתונים בזמן אמת בתבנית של Data Studio, צריך לפעול לפי ההוראות במאמר המחשה חזותית של נתוני Crashlytics שיוצאו באמצעות Data Studio.
יצירת תצוגות
אפשר להפוך שאילתות לתצוגות באמצעות ממשק המשתמש של BigQuery. הוראות מפורטות זמינות במאמר יצירת תצוגות במסמכי העזרה של BigQuery.
הרצת שאילתות
בדוגמאות הבאות מפורטות שאילתות שאפשר להריץ על נתוני Crashlytics כדי ליצור דוחות שמאגדים נתונים של אירועי תאונות לסיכומים שקל יותר להבין. מכיוון שסוגי הדוחות האלה לא זמינים במרכז הבקרה Crashlytics במסוף Firebase, הם יכולים להשלים את הניתוח וההבנה של נתוני התקלות.
דוגמה 1: קריסות לפי יום
אחרי שניסיתם לתקן כמה שיותר באגים, אתם חושבים שהצוות שלכם מוכן סוף סוף להשיק את אפליקציית שיתוף התמונות החדשה. לפני כן, אתם רוצים לבדוק את מספר הקריסות ביום בחודש האחרון, כדי לוודא שהבאג-באש עזר לאפליקציה להיות יציבה יותר לאורך זמן.
זוהי דוגמה לשאילתה לאפליקציה ל-Android. באפליקציה ל-iOS, צריך להשתמש במזהה החבילה וב-IOS
(במקום שם החבילה וב-ANDROID
).
SELECT
COUNT(DISTINCT event_id) AS number_of_crashes,
FORMAT_TIMESTAMP("%F", event_timestamp) AS date_of_crashes
FROM
`PROJECT_ID.firebase_crashlytics.PACKAGE_NAME_ANDROID`
GROUP BY
date_of_crashes
ORDER BY
date_of_crashes DESC
LIMIT 30;
דוגמה 2: איתור הקריסות שפוגעות במידה הרבה ביותר
כדי לתת עדיפות לתוכניות ייצור בצורה נכונה, כדאי למצוא את 10 הקריסות המובילות שמתרחשות באפליקציה שלכם. יוצרים שאילתה שמספקת את נקודות הנתונים הרלוונטיות.
הנה שאילתה לדוגמה לאפליקציה ל-Android: לאפליקציה ל-iOS, צריך להשתמש במזהה החבילה וב-IOS
(במקום בשם החבילה וב-ANDROID
).
SELECT
DISTINCT issue_id,
COUNT(DISTINCT event_id) AS number_of_crashes,
COUNT(DISTINCT installation_uuid) AS number_of_impacted_user,
blame_frame.file,
blame_frame.line
FROM
`PROJECT_ID.firebase_crashlytics.PACKAGE_NAME_ANDROID`
WHERE
event_timestamp >= TIMESTAMP_SUB(CURRENT_TIMESTAMP(),INTERVAL 168 HOUR)
AND event_timestamp < CURRENT_TIMESTAMP()
GROUP BY
issue_id,
blame_frame.file,
blame_frame.line
ORDER BY
number_of_crashes DESC
LIMIT 10;
דוגמה 3: 10 המכשירים המובילים שמתרסקים
הסתיו הוא העונה של טלפונים חדשים! החברה שלכם יודעת גם שמדובר בעונה חדשה של בעיות שקשורות למכשיר, במיוחד ל-Android. כדי להתכונן מראש לבעיות התאימות הצפויות, אתם יוצרים שאילתה שמזהה את 10 המכשירים שקרסו הכי הרבה פעמים בשבוע האחרון (168 שעות).
זוהי דוגמה לשאילתה לאפליקציה ל-Android. באפליקציה ל-iOS, צריך להשתמש במזהה החבילה וב-IOS
(במקום שם החבילה וב-ANDROID
).
SELECT
device.model,
COUNT(DISTINCT event_id) AS number_of_crashes
FROM
`PROJECT_ID.firebase_crashlytics.PACKAGE_NAME_ANDROID`
WHERE
event_timestamp >= TIMESTAMP_SUB(CURRENT_TIMESTAMP(), INTERVAL 168 HOUR)
AND event_timestamp < CURRENT_TIMESTAMP()
GROUP BY
device.model
ORDER BY
number_of_crashes DESC
LIMIT 10;
דוגמה 4: סינון לפי מפתח מותאם אישית
אתם מפתחי משחקים שרוצים לדעת באיזה שלב במשחק מתרחשים הכי הרבה קריסות.
כדי לעקוב אחרי הנתונים הסטטיסטיים האלה, אפשר להגדיר מפתח Crashlytics בהתאמה אישית בשם current_level
, ולעדכן אותו בכל פעם שהמשתמש מגיע לרמה חדשה.
Swift
Crashlytics.sharedInstance().setIntValue(3, forKey: "current_level");
Objective-C
CrashlyticsKit setIntValue:3 forKey:@"current_level";
Java
Crashlytics.setInt("current_level", 3);
אחרי שתוסיפו את המפתח הזה לייצוא אל BigQuery, תוכלו לכתוב שאילתה כדי לדווח על התפלגות הערכים של current_level
שמשויכים לכל אירוע התרסקות.
זוהי דוגמה לשאילתה לאפליקציה ל-Android. באפליקציה ל-iOS, צריך להשתמש במזהה החבילה וב-IOS
(במקום שם החבילה וב-ANDROID
).
SELECT
COUNT(DISTINCT event_id) AS num_of_crashes,
value
FROM
`PROJECT_ID.firebase_crashlytics.PACKAGE_NAME_ANDROID`
UNNEST(custom_keys)
WHERE
key = "current_level"
GROUP BY
key,
value
ORDER BY
num_of_crashes DESC
דוגמה 5: חילוץ User‑ID
יש לכם אפליקציה ל-Android בגרסת גישה מוקדמת. רוב המשתמשים שלכם אוהבים את האפליקציה, אבל שלושה מהם נתקלו במספר לא רגיל של קריסות. כדי להגיע לתחתית הבעיה, כותבים שאילתה שמאחזרת את כל אירועי הקריסה של המשתמשים האלה באמצעות מזהי המשתמשים שלהם.
זוהי דוגמה לשאילתה לאפליקציה ל-Android. באפליקציה ל-iOS, צריך להשתמש במזהה החבילה וב-IOS
(במקום שם החבילה וב-ANDROID
).
SELECT *
FROM
`PROJECT_ID.firebase_crashlytics.PACKAGE_NAME_ANDROID`
WHERE
user.id IN ("USER_ID_1", "USER_ID_2", "USER_ID_3")
ORDER BY
user.id
דוגמה 6: חיפוש כל המשתמשים שנתקלו בבעיה ספציפית של קריסה
הצוות שלך שחרר בטעות באג קריטי לקבוצה של בודקי גרסת בטא. הצוות שלך הצליח להשתמש בשאילתה מהדוגמה 'איתור התקריות הנפוצות ביותר' שלמעלה כדי לזהות את מזהה הבעיה הספציפית של הקריסה. עכשיו הצוות שלך רוצה להריץ שאילתה כדי לחלץ את רשימת משתמשי האפליקציה שהושפעו מהקריסה הזו.
הנה שאילתה לדוגמה לאפליקציה ל-Android: לאפליקציה ל-iOS, צריך להשתמש במזהה החבילה וב-IOS
(במקום בשם החבילה וב-ANDROID
).
SELECT user.id as user_id
FROM
`PROJECT_ID.firebase_crashlytics.PACKAGE_NAME_ANDROID`
WHERE
issue_id = "ISSUE_ID"
AND application.display_version = "APP_VERSION"
AND user.id != ""
ORDER BY
user.id;
דוגמה 7: מספר המשתמשים שהושפעו מבעיה של קריסה, לפי מדינה
הצוות שלכם זיהה באג קריטי במהלך ההשקה של גרסה חדשה. השתמשתם בשאילתה מהדוגמה 'חיפוש התקלות הנפוצות ביותר' שלמעלה כדי לזהות את מזהה הבעיה הספציפית של הקריסה. עכשיו הצוות שלך רוצה לבדוק אם הקריסה הזו התפשטה למשתמשים במדינות שונות ברחבי העולם.
כדי לכתוב את השאילתה הזו, הצוות שלכם יצטרך לבצע את הפעולות הבאות:
מפעילים את הייצוא של נתוני Google Analytics אל BigQuery. ייצוא נתוני פרויקטים ל-BigQuery
צריך לעדכן את האפליקציה כך שיעביר מזהה משתמש גם ל-SDK של Google Analytics וגם ל-SDK של Crashlytics.
Swift
Crashlytics.sharedInstance().setUserIdentifier("123456789"); Analytics.setUserID("123456789");
Objective-C
CrashlyticsKit setUserIdentifier:@"123456789"; FIRAnalytics setUserID:@"12345678 9";
Java
Crashlytics.setUserIdentifier("123456789"); mFirebaseAnalytics.setUserId("123456789");
כותבים שאילתה שמשתמשת בשדה user_id כדי לצרף אירועים במערך הנתונים Google Analytics לתאונות במערך הנתונים Crashlytics.
זוהי דוגמה לשאילתה לאפליקציה ל-Android. באפליקציה ל-iOS, צריך להשתמש במזהה החבילה וב-
IOS
(במקום שם החבילה וב-ANDROID
).SELECT DISTINCT c.issue_id, a.geo.country, COUNT(DISTINCT c.user.id) as num_users_impacted FROM `PROJECT_ID.firebase_crashlytics.PACKAGE_NAME_ANDROID` c INNER JOIN `PROJECT_ID.analytics_TABLE_NAME.events_*` a on c.user.id = a.user_id WHERE c.issue_id = "ISSUE_ID" AND a._TABLE_SUFFIX BETWEEN '20190101' AND '20200101' GROUP BY c.issue_id, a.geo.country, c.user.id
דוגמה 8: 5 הבעיות המובילות עד עכשיו היום
זוהי דוגמה לשאילתה לאפליקציה ל-Android. באפליקציה ל-iOS, צריך להשתמש במזהה החבילה וב-IOS
(במקום שם החבילה וב-ANDROID
).
SELECT
issue_id,
COUNT(DISTINCT event_id) AS events
FROM
`PROJECT_ID.firebase_crashlytics.PACKAGE_NAME_ANDROID_REALTIME`
WHERE
DATE(event_timestamp) = CURRENT_DATE()
GROUP BY
issue_id
ORDER BY
events DESC
LIMIT
5;
דוגמה 9: 5 הבעיות המובילות מאז DATE, כולל היום
אפשר גם לשלב את הטבלאות של האצווה והטבלאות בזמן אמת עם שאילתת סטיצ'ינג כדי להוסיף מידע בזמן אמת לנתוני האצווה המהימנים. מכיוון ש-event_id
הוא מפתח ראשי, אפשר להשתמש ב-DISTINCT event_id
כדי למחוק כפילויות של אירועים משותפים בשתי הטבלאות.
זוהי דוגמה לשאילתה לאפליקציה ל-Android. באפליקציה ל-iOS, צריך להשתמש במזהה החבילה וב-IOS
(במקום שם החבילה וב-ANDROID
).
SELECT issue_id, COUNT(DISTINCT event_id) AS events FROM ( SELECT issue_id, event_id, event_timestamp FROM `PROJECT_ID.firebase_crashlytics.PACKAGE_NAME_ANDROID_REALTIME` UNION ALL SELECT issue_id, event_id, event_timestamp FROM `PROJECT_ID.firebase_crashlytics.PACKAGE_NAME_ANDROID`) WHERE event_timestamp >= "YYYY_MM_DD" GROUP BY issue_id ORDER BY events DESC LIMIT 5;
הסבר על הסכימה Crashlytics ב-BigQuery
כשמגדירים ייצוא נתונים מ-Crashlytics אל BigQuery, מערכת Firebase מייצאת אירועים מהזמן האחרון (קריסות, שגיאות לא קטלניות ואירועי ANR), כולל אירועים מ-2 ימים לפני הקישור, עם אפשרות למילוי חוסרים עד 30 יום.
מנקודה זו ואילך, עד להשבתת הייצוא, מערכת Firebase תייצא אירועי Crashlytics על בסיס יומי. יכול להיות שיחלפו כמה דקות עד שהנתונים יהיו זמינים ב-BigQuery אחרי כל ייצוא.
מערכי נתונים
Crashlytics יוצר מערך נתונים חדש ב-BigQuery לנתוני Crashlytics. מערך הנתונים כולל את כל הפרויקט, גם אם הוא כולל מספר אפליקציות.
טבלאות
Crashlytics יוצרת טבלה במערך הנתונים לכל אפליקציה בפרויקט, אלא אם ביטלתם את האפשרות לייצא את הנתונים של אותה אפליקציה. מערכת Firebase מספקת שמות לטבלאות על סמך מזהה האפליקציה, עם נקודות מומרים לקווים תחתונים ושם הפלטפורמה מצורף לסוף.
לדוגמה, נתונים של אפליקציה ל-Android ששם החבילה שלה com.google.test
יופיעו בטבלה בשם com_google_test_ANDROID
, ונתוני זמן אמת (אם הם מופעלים) יופיעו בטבלה בשם com_google_test_ANDROID_REALTIME
הטבלאות מכילות קבוצה רגילה של נתוני Crashlytics, בנוסף לכל מפתחות Crashlytics מותאמים אישית שהגדרתם באפליקציה.
שורות
כל שורה בטבלה מייצגת שגיאה שהאפליקציה נתקלה בה.
עמודות
העמודות בטבלה זהות עבור קריסות, שגיאות לא חמורות ומקרי ANR. אם הייצוא בסטרימינג של Crashlytics ל-BigQuery מופעל, לטבלה בזמן אמת יהיו אותן עמודות כמו לטבלת האצווה. שימו לב: יכול להיות שיהיו עמודות בשורות שמייצגות אירועים שאין להם מעקב סטאק.
העמודות בתוך הייצוא מפורטות בטבלה הזו:
שם השדה | סוג הנתונים | תיאור |
---|---|---|
platform |
מחרוזת | הפלטפורמה של האפליקציה כפי שרשומה בפרויקט Firebase (ערכים חוקיים: IOS או ANDROID )
|
bundle_identifier |
מחרוזת | המזהה הייחודי של האפליקציה כפי שהוא רשום בפרויקט Firebase (לדוגמה, com.google.gmail באפליקציות לפלטפורמות של Apple, זהו מזהה החבילה של האפליקציה. באפליקציות ל-Android, זהו שם החבילה של האפליקציה. |
event_id |
מחרוזת | המזהה הייחודי של האירוע |
is_fatal |
בוליאני | אם האפליקציה קרסה |
error_type |
מחרוזת | סוג השגיאה של האירוע (לדוגמה, FATAL , NON_FATAL , ANR וכו') |
issue_id |
מחרוזת | הבעיה שמשויכת לאירוע |
variant_id |
מחרוזת | וריאנט הבעיה שמשויך לאירוע הזה שימו לב: לא לכל האירועים יש וריאנט בעיה משויך. |
event_timestamp |
TIMESTAMP | מתי האירוע התרחש |
device |
רשומה | המכשיר שבו התרחש האירוע |
device.manufacturer |
מחרוזת | יצרן המכשיר |
device.model |
מחרוזת | דגם המכשיר |
device.architecture |
מחרוזת | לדוגמה, X86_32 , X86_64 , ARMV7 , ARM64 , ARMV7S או ARMV7K |
memory |
רשומה | סטטוס הזיכרון של המכשיר |
memory.used |
INT64 | בייטים מהזיכרון בשימוש |
memory.free |
INT64 | הבייטים הנותרים בזיכרון |
storage |
רשומה | האחסון המתמיד של המכשיר |
storage.used |
INT64 | בייטים מנפח האחסון בשימוש |
storage.free |
INT64 | בייטים לנפח האחסון שנותרו |
operating_system |
רשומה | פרטי מערכת ההפעלה במכשיר |
operating_system.display_version |
מחרוזת | גרסת מערכת ההפעלה במכשיר |
operating_system.name |
מחרוזת | שם מערכת ההפעלה במכשיר |
operating_system.modification_state |
מחרוזת | האם המכשיר עבר שינוי (לדוגמה, אפליקציה עם גישה ל-Root היא MODIFIED ואפליקציה עם גישה ל-Jailbreak היא UNMODIFIED ) |
operating_system.type |
מחרוזת | (אפליקציות של Apple בלבד) סוג מערכת ההפעלה שפועלת במכשיר (לדוגמה, IOS , MACOS וכו') |
operating_system.device_type |
מחרוזת | סוג המכשיר (לדוגמה, MOBILE , TABLET , TV וכו'). נקרא גם 'קטגוריית מכשיר' |
application |
רשומה | האפליקציה שיצרה את האירוע |
application.build_version |
מחרוזת | גרסת ה-build של האפליקציה |
application.display_version |
מחרוזת | |
user |
רשומה | (אופציונלי) מידע שנאסף על משתמש האפליקציה |
user.name |
מחרוזת | (אופציונלי) שם המשתמש |
user.email |
מחרוזת | (אופציונלי) כתובת האימייל של המשתמש |
user.id |
מחרוזת | (אופציונלי) מזהה ספציפי לאפליקציה שמשויך למשתמש |
custom_keys |
REPEATED RECORD | צמדי מפתח/ערך שהוגדרו על ידי המפתח |
custom_keys.key |
מחרוזת | מפתח שהוגדר על ידי המפתח |
custom_keys.value |
מחרוזת | ערך שהוגדר על ידי המפתח |
installation_uuid |
מחרוזת | מזהה שמזהה התקנה ייחודית של אפליקציה ומכשיר |
crashlytics_sdk_versions |
מחרוזת | גרסת ה-SDK של Crashlytics שיצרה את האירוע |
app_orientation |
מחרוזת | לדוגמה, PORTRAIT , LANDSCAPE , FACE_UP , FACE_DOWN וכו'. |
device_orientation |
מחרוזת | לדוגמה, PORTRAIT , LANDSCAPE , FACE_UP , FACE_DOWN וכו'. |
process_state |
מחרוזת | BACKGROUND או FOREGROUND |
logs |
REPEATED RECORD | הודעות יומן עם חותמות זמן שנוצרו על ידי יומן Crashlytics, אם הופעלו |
logs.timestamp |
TIMESTAMP | מתי נוצר היומן |
logs.message |
מחרוזת | ההודעה ביומן |
breadcrumbs |
רשומה חוזרת | נתיבי ניווט Google Analytics עם חותמת זמן, אם הם מופעלים |
breadcrumbs.timestamp |
TIMESTAMP | חותמת הזמן שמשויכת לנתיב הניווט |
breadcrumbs.name |
מחרוזת | השם המשויך למסלול הניווט |
breadcrumbs.params |
REPEATED RECORD | פרמטרים שמשויכים לנתיב הניווט |
breadcrumbs.params.key |
מחרוזת | מפתח פרמטר המשויך למסלול הניווט |
breadcrumbs.params.value |
מחרוזת | ערך פרמטר שמשויך לנתיב הניווט |
blame_frame |
רשומה | המסגרת שזוהתה כגורם הבסיסי לקריסה או לשגיאה |
blame_frame.line |
INT64 | מספר השורה בקובץ של הפריים |
blame_frame.file |
מחרוזת | השם של קובץ המסגרת |
blame_frame.symbol |
מחרוזת | הסמל המשופר או הסמל הגולמי, אם לא ניתן לשפר אותו |
blame_frame.offset |
INT64 | היסט הבייטים לתמונה הבינארית שמכילה את הקוד לא הוגדר לחריגים של Java |
blame_frame.address |
INT64 | הכתובת בתמונה הבינארית שמכילה את הקוד לא מוגדר למסגרות Java |
blame_frame.library |
מחרוזת | השם המוצג של הספרייה שכוללת את המסגרת |
blame_frame.owner |
מחרוזת | לדוגמה, DEVELOPER , VENDOR ,
RUNTIME , PLATFORM או SYSTEM |
blame_frame.blamed |
בוליאני | אם Crashlytics קבע שהפריים הזה הוא הגורם לקריסה או לשגיאה |
exceptions |
REPEATED RECORD | (Android בלבד) חריגים שהתרחשו במהלך האירוע הזה. חריגות בתוך קבוצות מוצגות בסדר כרונולוגי הפוך, כלומר הרשומה האחרונה היא החריגה הראשונה שנרשמה |
exceptions.type |
מחרוזת | סוג החריג (לדוגמה, java.lang.IllegalStateException) |
exceptions.exception_message |
מחרוזת | הודעה שמשויכת לחריג |
exceptions.nested |
בוליאני | True לכולם חוץ מהחריגה האחרונה (כלומר, הרשומה הראשונה) |
exceptions.title |
מחרוזת | שם השרשור |
exceptions.subtitle |
מחרוזת | כותרת המשנה של השרשור |
exceptions.blamed |
בוליאני | הערך true אם Crashlytics קובע שהחריגה אחראית לשגיאה או לקריסה |
exceptions.frames |
REPEATED RECORD | הפריימים שמשויכים לחריג |
exceptions.frames.line |
INT64 | מספר השורה בקובץ של הפריים |
exceptions.frames.file |
מחרוזת | השם של קובץ המסגרת |
exceptions.frames.symbol |
מחרוזת | הסמל המשופר או הסמל הגולמי, אם לא ניתן לשפר אותו |
exceptions.frames.offset |
INT64 | היסט הבייטים לתמונה הבינארית שמכילה את הקוד לא הוגדר לחריגים של Java |
exceptions.frames.address |
INT64 | הכתובת בתמונה הבינארית שמכילה את הקוד לא מוגדר למסגרות Java |
exceptions.frames.library |
מחרוזת | השם המוצג של הספרייה שכוללת את המסגרת |
exceptions.frames.owner |
מחרוזת | לדוגמה, DEVELOPER , VENDOR ,
RUNTIME , PLATFORM או SYSTEM |
exceptions.frames.blamed |
בוליאני | אם Crashlytics קבע שהפריים הזה הוא הגורם לקריסה או לשגיאה |
error |
REPEATED RECORD | (אפליקציות של Apple בלבד) שגיאות לא קטלניות |
error.queue_name |
מחרוזת | התור שבו השרשור הופעל |
error.code |
INT64 | קוד השגיאה שמשויך ל-NSError בהתאמה אישית של האפליקציה שרשום ביומן |
error.title |
מחרוזת | שם השרשור |
error.subtitle |
מחרוזת | כותרת המשנה של השרשור |
error.blamed |
בוליאני | האם Crashlytics קבע שהמסגרת הזו היא הגורם לשגיאה |
error.frames |
REPEATED RECORD | המסגרות של דוח הקריסות |
error.frames.line |
INT64 | מספר השורה בקובץ של הפריים |
error.frames.file |
מחרוזת | השם של קובץ המסגרת |
error.frames.symbol |
מחרוזת | הסמל המשופר או הסמל הגולמי, אם לא ניתן לשפר אותו |
error.frames.offset |
INT64 | היסט הבייט בתמונה הבינארית שמכילה את הקוד |
error.frames.address |
INT64 | הכתובת בתמונה הבינארית שמכילה את הקוד |
error.frames.library |
מחרוזת | השם המוצג של הספרייה שכוללת את המסגרת |
error.frames.owner |
מחרוזת | לדוגמה, DEVELOPER , VENDOR ,
RUNTIME , PLATFORM או SYSTEM |
error.frames.blamed |
בוליאני | האם Crashlytics קבע שהמסגרת הזו היא הגורם לשגיאה |
threads |
REPEATED RECORD | שרשורים שהיו קיימים בזמן האירוע |
threads.crashed |
בוליאני | האם השרשור קרס |
threads.thread_name |
מחרוזת | שם השרשור |
threads.queue_name |
מחרוזת | (באפליקציות של Apple בלבד) התור שבו פעל השרשור |
threads.signal_name |
מחרוזת | שם האות שגרם לקריסת האפליקציה, מופיע רק בשרשורים מקוריים שקורסו |
threads.signal_code |
מחרוזת | הקוד של האות שגרם לקריסת האפליקציה. הקוד מוצג רק בשרשורים מקוריים שקורסו |
threads.crash_address |
INT64 | הכתובת של האות שגרם לקריסת האפליקציה. הנתון הזה מופיע רק בשרשראות מקוריות שנכשלו |
threads.code |
INT64 | (אפליקציות של Apple בלבד) קוד שגיאה של קובצי NSError בהתאמה אישית של האפליקציה |
threads.title |
מחרוזת | שם השרשור |
threads.subtitle |
מחרוזת | כותרת המשנה של השרשור |
threads.blamed |
בוליאני | אם Crashlytics קבע שהפריים הזה הוא הגורם לקריסה או לשגיאה |
threads.frames |
רשומה חוזרת | הפריימים של השרשור |
threads.frames.line |
INT64 | מספר השורה בקובץ של הפריים |
threads.frames.file |
מחרוזת | השם של קובץ המסגרת |
threads.frames.symbol |
מחרוזת | הסמל של המבנה המנוזל, או הסמל הגולמי אם לא ניתן להוסיף לו מים |
threads.frames.offset |
INT64 | היסט הבייט בתמונה הבינארית שמכילה את הקוד |
threads.frames.address |
INT64 | הכתובת בתמונה הבינארית שמכילה את הקוד |
threads.frames.library |
מחרוזת | השם המוצג של הספרייה שכוללת את המסגרת |
threads.frames.owner |
מחרוזת | לדוגמה, DEVELOPER , VENDOR ,
RUNTIME , PLATFORM או SYSTEM |
threads.frames.blamed |
בוליאני | אם Crashlytics קבע שהמסגרת הזו היא הגורם לשגיאה |
unity_metadata.unity_version |
מחרוזת | גרסת Unity שפועלת במכשיר הזה |
unity_metadata.debug_build |
בוליאני | אם מדובר ב-build לניפוי באגים |
unity_metadata.processor_type |
מחרוזת | סוג המעבד |
unity_metadata.processor_count |
INT64 | מספר המעבדים (הליבות) |
unity_metadata.processor_frequency_mhz |
INT64 | התדר של המעבדים במגה-הרץ |
unity_metadata.system_memory_size_mb |
INT64 | גודל הזיכרון של המערכת ב-MB |
unity_metadata.graphics_memory_size_mb |
INT64 | זיכרון הגרפיקה ב-MB |
unity_metadata.graphics_device_id |
INT64 | המזהה של מכשיר הגרפיקה |
unity_metadata.graphics_device_vendor_id |
INT64 | המזהה של ספק מעבד הגרפיקה |
unity_metadata.graphics_device_name |
מחרוזת | השם של מכשיר הגרפיקה |
unity_metadata.graphics_device_vendor |
מחרוזת | הספק של מכשיר הגרפיקה |
unity_metadata.graphics_device_version |
מחרוזת | הגרסה של מכשיר הגרפיקה |
unity_metadata.graphics_device_type |
מחרוזת | סוג מכשיר הגרפיקה |
unity_metadata.graphics_shader_level |
INT64 | רמת ה-shader של הגרפיקה |
unity_metadata.graphics_render_target_count |
INT64 | מספר היעדים לעיבוד גרפי |
unity_metadata.graphics_copy_texture_support |
מחרוזת | תמיכה בהעתקת טקסטורה של גרפיקה כפי שמוגדרת ב-Unity API |
unity_metadata.graphics_max_texture_size |
INT64 | הגודל המקסימלי הייעודי לעיבוד טקסטורה |
unity_metadata.screen_size_px |
מחרוזת | גודל המסך בפיקסלים, בפורמט של רוחב x גובה |
unity_metadata.screen_resolution_dpi |
מחרוזת | דחיסות המסך (DPI) כמספר נקודה צפה (floating-point) |
unity_metadata.screen_refresh_rate_hz |
INT64 | קצב הרענון של המסך ב-Hz |
הצגת נתוני Crashlytics מיוצאים בתצוגה חזותית באמצעות Data Studio
ב-Google Data Studio, מערכי הנתונים של Crashlytics ב-BigQuery הופכים לדוחות שקל יותר לקרוא ולשתף, ואפשר להתאים אותם אישית.
למידע נוסף על השימוש ב-Data Studio, כדאי לעיין במדריך למתחילים ב-Data Studio, ברוכים הבאים ל-Data Studio.
שימוש בתבנית של דוח Crashlytics
ב-Data Studio יש דוח לדוגמה בשביל Crashlytics, שכולל קבוצה מקיפה של מאפיינים ומדדים מהסכימה Crashlytics BigQuery המיוצאת. אם הפעלתם את הייצוא בסטרימינג של Crashlytics אל BigQuery, תוכלו להציג את הנתונים האלה בדף מגמות בזמן אמת בתבנית של Data Studio. אפשר להשתמש בדוגמה הזו כתבנית כדי ליצור במהירות דוחות ותצוגות חזותיות חדשות על סמך נתוני הקריסות הגולמיים של האפליקציה שלכם:
לוחצים על שימוש בתבנית בפינה השמאלית העליונה.
בתפריט הנפתח New Data Source, בוחרים באפשרות Create New Data Source.
לוחצים על בחירה בכרטיס BigQuery.
בוחרים טבלה שמכילה נתוני Crashlytics שיוצאו, על ידי בחירה באפשרות My Projects > PROJECT_ID > firebase_crashlytics > TABLE_NAME.
תמיד אפשר לבחור את טבלת האצווה. אם הייצוא בסטרימינג של Crashlytics אל BigQuery מופעל, תוכלו לבחור במקום זאת את הטבלה של נתוני הזמן האמת.
בקטע Configuration, מגדירים את Crashlytics Template level לערך Default.
לוחצים על קישור כדי ליצור את מקור הנתונים החדש.
לוחצים על הוספה לדוח כדי לחזור לתבנית Crashlytics.
לבסוף, לוחצים על Create Report (יצירת דוח) כדי ליצור עותק של התבנית Crashlytics של מרכז הבקרה ב-Data Studio.
שדרוג לתשתית הייצוא החדשה
באמצע אוקטובר 2024, הושקה תשתית חדשה של Crashlytics לייצוא נתוני Crashlytics אל BigQuery. נכון לעכשיו, השדרוג לתשתית החדשה הוא אופציונלי.
התשתית החדשה הזו תומכת במיקומים של Crashlytics מערכי נתונים מחוץ לארצות הברית.
אם הפעלת את הייצוא לפני אמצע אוקטובר 2024, אפשר עכשיו לשנות את המיקום של ייצוא הנתונים לכל מיקום של מערך נתונים שיש בו תמיכה ב-BigQuery.
אם הפעלתם ייצוא באמצע אוקטובר 2024 או מאוחר יותר, תוכלו לבחור כל מיקום של מערכי נתונים שנתמכים ב-BigQuery במהלך ההגדרה.
הבדל נוסף בתשתית החדשה הוא שהיא לא תומכת בהשלמות נתונים מלפני שהפעלתם את הייצוא. (בתשתית הישנה אפשר לבצע מילוי חוסרים עד 30 יום לפני תאריך ההפעלה). התשתית החדשה תומכת במילוי חוסרים עד 30 הימים האחרונים או עד לתאריך האחרון שבו הפעלתם את הייצוא אל BigQuery (המוקדם מביניהם).
דרישה מוקדמת לשדרוג
לפני שמשדרגים לתשתית החדשה, צריך לוודא שעומדים בדרישת ההתחלה הבאה: למזהי הטבלאות הקיימות של BigQuery צריך להיות התאמה למזהי החבילות או לשמות החבילות שהוגדרו לאפליקציות Firebase הרשומים.
לדוגמה:
אם יש לכם טבלה BigQuery בשם
com_yourcompany_yourproject_IOS
, סימן שאפליקציית Firebase ל-iOS+ רשומה בפרויקט Firebase שלכם עם מזהה החבילהcom.yourcompany.yourproject
.אם יש לכם טבלה BigQuery בשם
com_yourcompany_yourproject_ANDROID
, סימן שאפליקציית Firebase ל-Android רשומה בפרויקט Firebase שלכם עם שם החבילהcom.yourcompany.yourproject
.
כך מוצאים את כל האפליקציות ב-Firebase שרשונות בפרויקט ב-Firebase:
במסוף Firebase, עוברים אל Project settings ב- .
גוללים למטה לכרטיס האפליקציות שלך ולוחצים על האפליקציה הרצויה ב-Firebase כדי להציג את פרטי האפליקציה, כולל המזהה שלה.
תשתית הייצוא החדשה תייצא את הנתונים של כל אפליקציה על סמך שם החבילה או מזהה החבילה שהוגדרו לאפליקציית Firebase הרשומה. כדי לא לשבש את תהליך העבודה של BigQuery, חשוב לוודא שלטבלאות האצווה הנוכחיות כבר יש את השמות הנכונים, כדי שתשתית הייצוא החדשה תוכל לצרף את כל הנתונים החדשים לטבלאות הקיימות. אם יש לכם שמות של טבלאות אצווה שלא תואמים לאפליקציות הרשומה ב-Firebase, אבל אתם עדיין רוצים לשדרג, פנו לתמיכה של Firebase.
איך לשדרג לתשתית החדשה
אם כבר הפעלתם ייצוא, תוכלו לשדרג לתשתית החדשה פשוט על ידי השבתה ואז הפעלה מחדש של ייצוא הנתונים של Crashlytics במסוף Firebase.
אלה השלבים המפורטים:
נכנסים לדף Integrations במסוף Firebase.
בכרטיס BigQuery, לוחצים על Manage (ניהול).
כדי להשבית את הייצוא צריך להשבית את פס ההזזה של Crashlytics. כשמופיעה הבקשה, מאשרים שרוצים להפסיק את ייצוא הנתונים.
כדי להפעיל מחדש את הייצוא, מעבירים מיד את פס ההזזה Crashlytics למצב מופעל. כשמוצגת הנחיה, מאשרים שרוצים לייצא נתונים.
ייצוא הנתונים של Crashlytics אל BigQuery מתבצע עכשיו באמצעות תשתית הייצוא החדשה.