Puedes usar Firebase ML para etiquetar objetos reconocidos en una imagen. Consulte la descripción general para obtener información sobre las características de esta API.
Antes de que empieces
- Si aún no lo has hecho, agrega Firebase a tu proyecto de Android .
- En el archivo Gradle de su módulo (nivel de aplicación) (generalmente
<project>/<app-module>/build.gradle.kts
o<project>/<app-module>/build.gradle
), agregue la dependencia para Firebase ML Biblioteca de visión para Android. Recomendamos utilizar Firebase Android BoM para controlar el control de versiones de la biblioteca.dependencies { // Import the BoM for the Firebase platform implementation(platform("com.google.firebase:firebase-bom:32.8.0")) // Add the dependency for the Firebase ML Vision library // When using the BoM, you don't specify versions in Firebase library dependencies implementation 'com.google.firebase:firebase-ml-vision' }
Al usar Firebase Android BoM , su aplicación siempre usará versiones compatibles de las bibliotecas de Firebase Android.
¿Busca un módulo de biblioteca específico de Kotlin? A partir de octubre de 2023 (Firebase BoM 32.5.0) , tanto los desarrolladores de Kotlin como los de Java podrán depender del módulo de biblioteca principal (para más detalles, consulte las preguntas frecuentes sobre esta iniciativa ).(Alternativa) Agregue dependencias de la biblioteca de Firebase sin usar la BoM
Si elige no utilizar la BoM de Firebase, debe especificar cada versión de la biblioteca de Firebase en su línea de dependencia.
Tenga en cuenta que si usa varias bibliotecas de Firebase en su aplicación, le recomendamos encarecidamente usar la BoM para administrar las versiones de la biblioteca, lo que garantiza que todas las versiones sean compatibles.
dependencies { // Add the dependency for the Firebase ML Vision library // When NOT using the BoM, you must specify versions in Firebase library dependencies implementation 'com.google.firebase:firebase-ml-vision:24.1.0' }
Si aún no ha habilitado las API basadas en la nube para su proyecto, hágalo ahora:
- Abra la página API de Firebase ML de Firebase console.
Si aún no ha actualizado su proyecto al plan de precios Blaze, haga clic en Actualizar para hacerlo. (Se le pedirá que actualice solo si su proyecto no está en el plan Blaze).
Solo los proyectos de nivel Blaze pueden utilizar API basadas en la nube.
- Si las API basadas en la nube aún no están habilitadas, haga clic en Habilitar API basadas en la nube .
Ahora estás listo para etiquetar imágenes.
1. Prepare la imagen de entrada
Crea un objetoFirebaseVisionImage
a partir de tu imagen. El etiquetador de imágenes se ejecuta más rápido cuando usa un Bitmap
o, si usa la API de camera2, un media.Image
con formato JPEG, que se recomiendan cuando sea posible.Para crear un objeto
FirebaseVisionImage
a partir de un objetomedia.Image
, como al capturar una imagen desde la cámara de un dispositivo, pase el objetomedia.Image
y la rotación de la imagen aFirebaseVisionImage.fromMediaImage()
.Si usa la biblioteca CameraX , las clases
OnImageCapturedListener
eImageAnalysis.Analyzer
calculan el valor de rotación por usted, por lo que solo necesita convertir la rotación a una de las constantesROTATION_
de Firebase ML antes de llamar aFirebaseVisionImage.fromMediaImage()
:Kotlin+KTX
private class YourImageAnalyzer : ImageAnalysis.Analyzer { private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) { 0 -> FirebaseVisionImageMetadata.ROTATION_0 90 -> FirebaseVisionImageMetadata.ROTATION_90 180 -> FirebaseVisionImageMetadata.ROTATION_180 270 -> FirebaseVisionImageMetadata.ROTATION_270 else -> throw Exception("Rotation must be 0, 90, 180, or 270.") } override fun analyze(imageProxy: ImageProxy?, degrees: Int) { val mediaImage = imageProxy?.image val imageRotation = degreesToFirebaseRotation(degrees) if (mediaImage != null) { val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation) // Pass image to an ML Vision API // ... } } }
Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { private int degreesToFirebaseRotation(int degrees) { switch (degrees) { case 0: return FirebaseVisionImageMetadata.ROTATION_0; case 90: return FirebaseVisionImageMetadata.ROTATION_90; case 180: return FirebaseVisionImageMetadata.ROTATION_180; case 270: return FirebaseVisionImageMetadata.ROTATION_270; default: throw new IllegalArgumentException( "Rotation must be 0, 90, 180, or 270."); } } @Override public void analyze(ImageProxy imageProxy, int degrees) { if (imageProxy == null || imageProxy.getImage() == null) { return; } Image mediaImage = imageProxy.getImage(); int rotation = degreesToFirebaseRotation(degrees); FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation); // Pass image to an ML Vision API // ... } }
Si no utiliza una biblioteca de cámaras que le proporcione la rotación de la imagen, puede calcularla a partir de la rotación del dispositivo y la orientación del sensor de la cámara en el dispositivo:
Kotlin+KTX
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 90) ORIENTATIONS.append(Surface.ROTATION_90, 0) ORIENTATIONS.append(Surface.ROTATION_180, 270) ORIENTATIONS.append(Surface.ROTATION_270, 180) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360 // Return the corresponding FirebaseVisionImageMetadata rotation value. val result: Int when (rotationCompensation) { 0 -> result = FirebaseVisionImageMetadata.ROTATION_0 90 -> result = FirebaseVisionImageMetadata.ROTATION_90 180 -> result = FirebaseVisionImageMetadata.ROTATION_180 270 -> result = FirebaseVisionImageMetadata.ROTATION_270 else -> { result = FirebaseVisionImageMetadata.ROTATION_0 Log.e(TAG, "Bad rotation value: $rotationCompensation") } } return result }
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 90); ORIENTATIONS.append(Surface.ROTATION_90, 0); ORIENTATIONS.append(Surface.ROTATION_180, 270); ORIENTATIONS.append(Surface.ROTATION_270, 180); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, Context context) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360; // Return the corresponding FirebaseVisionImageMetadata rotation value. int result; switch (rotationCompensation) { case 0: result = FirebaseVisionImageMetadata.ROTATION_0; break; case 90: result = FirebaseVisionImageMetadata.ROTATION_90; break; case 180: result = FirebaseVisionImageMetadata.ROTATION_180; break; case 270: result = FirebaseVisionImageMetadata.ROTATION_270; break; default: result = FirebaseVisionImageMetadata.ROTATION_0; Log.e(TAG, "Bad rotation value: " + rotationCompensation); } return result; }
Luego, pasa el objeto
media.Image
y el valor de rotación aFirebaseVisionImage.fromMediaImage()
:Kotlin+KTX
val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
Java
FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
- Para crear un objeto
FirebaseVisionImage
a partir de un URI de archivo, pase el contexto de la aplicación y el URI del archivo aFirebaseVisionImage.fromFilePath()
. Esto es útil cuando usas un intentACTION_GET_CONTENT
para pedirle al usuario que seleccione una imagen de su aplicación de galería.Kotlin+KTX
val image: FirebaseVisionImage try { image = FirebaseVisionImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
Java
FirebaseVisionImage image; try { image = FirebaseVisionImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
- Para crear un objeto
FirebaseVisionImage
a partir de unByteBuffer
o una matriz de bytes, primero calcule la rotación de la imagen como se describe anteriormente para la entradamedia.Image
.Luego, crea un objeto
FirebaseVisionImageMetadata
que contenga la altura, el ancho, el formato de codificación de color y la rotación de la imagen:Kotlin+KTX
val metadata = FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build()
Java
FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build();
Utilice el búfer o matriz y el objeto de metadatos para crear un objeto
FirebaseVisionImage
:Kotlin+KTX
val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata) // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
Java
FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata); // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
- Para crear un objeto
FirebaseVisionImage
a partir de un objetoBitmap
:La imagen representada por el objetoKotlin+KTX
val image = FirebaseVisionImage.fromBitmap(bitmap)
Java
FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
Bitmap
debe estar en posición vertical, sin necesidad de rotación adicional.
2. Configure y ejecute el etiquetador de imágenes.
Para etiquetar objetos en una imagen, pase el objetoFirebaseVisionImage
al método processImage
de FirebaseVisionImageLabeler
.Primero, obtenga una instancia de
FirebaseVisionImageLabeler
.Kotlin+KTX
val labeler = FirebaseVision.getInstance().getCloudImageLabeler() // Or, to set the minimum confidence required: // val options = FirebaseVisionCloudImageLabelerOptions.Builder() // .setConfidenceThreshold(0.7f) // .build() // val labeler = FirebaseVision.getInstance().getCloudImageLabeler(options)
Java
FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance() .getCloudImageLabeler(); // Or, to set the minimum confidence required: // FirebaseVisionCloudImageLabelerOptions options = // new FirebaseVisionCloudImageLabelerOptions.Builder() // .setConfidenceThreshold(0.7f) // .build(); // FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance() // .getCloudImageLabeler(options);
Luego, pasa la imagen al método
processImage()
:Kotlin+KTX
labeler.processImage(image) .addOnSuccessListener { labels -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
Java
labeler.processImage(image) .addOnSuccessListener(new OnSuccessListener<List<FirebaseVisionImageLabel>>() { @Override public void onSuccess(List<FirebaseVisionImageLabel> labels) { // Task completed successfully // ... } }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
3. Obtener información sobre objetos etiquetados.
Si la operación de etiquetado de imágenes tiene éxito, se pasará una lista de objetosFirebaseVisionImageLabel
al oyente exitoso. Cada objeto FirebaseVisionImageLabel
representa algo que se etiquetó en la imagen. Para cada etiqueta, puede obtener la descripción del texto de la etiqueta, su ID de entidad del Gráfico de conocimiento (si está disponible) y la puntuación de confianza de la coincidencia. Por ejemplo: Kotlin+KTX
for (label in labels) {
val text = label.text
val entityId = label.entityId
val confidence = label.confidence
}
Java
for (FirebaseVisionImageLabel label: labels) {
String text = label.getText();
String entityId = label.getEntityId();
float confidence = label.getConfidence();
}
Próximos pasos
- Antes de implementar en producción una aplicación que utiliza una API de la nube, debe tomar algunas medidas adicionales para prevenir y mitigar el efecto del acceso no autorizado a la API .