Você pode usar o ML Kit para reconhecer pontos de referência conhecidos em uma imagem.
Antes de você começar
- Se você ainda não adicionou o Firebase ao seu aplicativo, faça isso seguindo as etapas do guia de primeiros passos .
- Inclua as bibliotecas do ML Kit em seu Podfile:
pod 'Firebase/MLVision', '6.25.0'
Depois de instalar ou atualizar os pods do seu projeto, certifique-se de abrir seu projeto Xcode usando seu.xcworkspace
. - No seu aplicativo, importe o Firebase:
Rápido
import Firebase
Objetivo-C
@import Firebase;
Se você ainda não habilitou APIs baseadas em nuvem para seu projeto, faça-o agora:
- Abra a página APIs do kit de ML do console do Firebase.
Se você ainda não atualizou seu projeto para um plano de preços Blaze, clique em Atualizar para fazer isso. (Você será solicitado a atualizar somente se o seu projeto não estiver no plano Blaze.)
Somente projetos no nível Blaze podem usar APIs baseadas em nuvem.
- Se as APIs baseadas em nuvem ainda não estiverem habilitadas, clique em Habilitar APIs baseadas em nuvem .
Configurar o detector de pontos de referência
Por padrão, o detector de nuvem usa a versão estável do modelo e retorna até 10 resultados. Se desejar alterar qualquer uma dessas configurações, especifique-as com um objeto VisionCloudDetectorOptions
como no exemplo a seguir:
Rápido
let options = VisionCloudDetectorOptions() options.modelType = .latest options.maxResults = 20
Objetivo-C
FIRVisionCloudDetectorOptions *options = [[FIRVisionCloudDetectorOptions alloc] init]; options.modelType = FIRVisionCloudModelTypeLatest; options.maxResults = 20;
Na próxima etapa, passe o objeto VisionCloudDetectorOptions
ao criar o objeto Detector de nuvem.
Execute o detector de pontos de referência
Para reconhecer pontos de referência em uma imagem, passe a imagem comoUIImage
ou CMSampleBufferRef
para o método detect(in:)
do VisionCloudLandmarkDetector
:- Obtenha uma instância do
VisionCloudLandmarkDetector
:Rápido
lazy var vision = Vision.vision() let cloudDetector = vision.cloudLandmarkDetector(options: options) // Or, to use the default settings: // let cloudDetector = vision.cloudLandmarkDetector()
Objetivo-C
FIRVision *vision = [FIRVision vision]; FIRVisionCloudLandmarkDetector *landmarkDetector = [vision cloudLandmarkDetector]; // Or, to change the default settings: // FIRVisionCloudLandmarkDetector *landmarkDetector = // [vision cloudLandmarkDetectorWithOptions:options];
Crie um objeto
VisionImage
usandoUIImage
ouCMSampleBufferRef
.Para usar uma
UIImage
:- Se necessário, gire a imagem para que sua propriedade
imageOrientation
seja.up
. - Crie um objeto
VisionImage
usando oUIImage
girado corretamente. Não especifique nenhum metadado de rotação — o valor padrão,.topLeft
, deve ser usado.Rápido
let image = VisionImage(image: uiImage)
Objetivo-C
FIRVisionImage *image = [[FIRVisionImage alloc] initWithImage:uiImage];
Para usar um
CMSampleBufferRef
:Crie um objeto
VisionImageMetadata
que especifique a orientação dos dados de imagem contidos no bufferCMSampleBufferRef
.Para obter a orientação da imagem:
Rápido
func imageOrientation( deviceOrientation: UIDeviceOrientation, cameraPosition: AVCaptureDevice.Position ) -> VisionDetectorImageOrientation { switch deviceOrientation { case .portrait: return cameraPosition == .front ? .leftTop : .rightTop case .landscapeLeft: return cameraPosition == .front ? .bottomLeft : .topLeft case .portraitUpsideDown: return cameraPosition == .front ? .rightBottom : .leftBottom case .landscapeRight: return cameraPosition == .front ? .topRight : .bottomRight case .faceDown, .faceUp, .unknown: return .leftTop } }
Objetivo-C
- (FIRVisionDetectorImageOrientation) imageOrientationFromDeviceOrientation:(UIDeviceOrientation)deviceOrientation cameraPosition:(AVCaptureDevicePosition)cameraPosition { switch (deviceOrientation) { case UIDeviceOrientationPortrait: if (cameraPosition == AVCaptureDevicePositionFront) { return FIRVisionDetectorImageOrientationLeftTop; } else { return FIRVisionDetectorImageOrientationRightTop; } case UIDeviceOrientationLandscapeLeft: if (cameraPosition == AVCaptureDevicePositionFront) { return FIRVisionDetectorImageOrientationBottomLeft; } else { return FIRVisionDetectorImageOrientationTopLeft; } case UIDeviceOrientationPortraitUpsideDown: if (cameraPosition == AVCaptureDevicePositionFront) { return FIRVisionDetectorImageOrientationRightBottom; } else { return FIRVisionDetectorImageOrientationLeftBottom; } case UIDeviceOrientationLandscapeRight: if (cameraPosition == AVCaptureDevicePositionFront) { return FIRVisionDetectorImageOrientationTopRight; } else { return FIRVisionDetectorImageOrientationBottomRight; } default: return FIRVisionDetectorImageOrientationTopLeft; } }
Em seguida, crie o objeto de metadados:
Rápido
let cameraPosition = AVCaptureDevice.Position.back // Set to the capture device you used. let metadata = VisionImageMetadata() metadata.orientation = imageOrientation( deviceOrientation: UIDevice.current.orientation, cameraPosition: cameraPosition )
Objetivo-C
FIRVisionImageMetadata *metadata = [[FIRVisionImageMetadata alloc] init]; AVCaptureDevicePosition cameraPosition = AVCaptureDevicePositionBack; // Set to the capture device you used. metadata.orientation = [self imageOrientationFromDeviceOrientation:UIDevice.currentDevice.orientation cameraPosition:cameraPosition];
- Crie um objeto
VisionImage
usando o objetoCMSampleBufferRef
e os metadados de rotação:Rápido
let image = VisionImage(buffer: sampleBuffer) image.metadata = metadata
Objetivo-C
FIRVisionImage *image = [[FIRVisionImage alloc] initWithBuffer:sampleBuffer]; image.metadata = metadata;
- Se necessário, gire a imagem para que sua propriedade
- Em seguida, passe a imagem para o método
detect(in:)
:Rápido
cloudDetector.detect(in: visionImage) { landmarks, error in guard error == nil, let landmarks = landmarks, !landmarks.isEmpty else { // ... return } // Recognized landmarks // ... }
Objetivo-C
[landmarkDetector detectInImage:image completion:^(NSArray<FIRVisionCloudLandmark *> *landmarks, NSError *error) { if (error != nil) { return; } else if (landmarks != nil) { // Got landmarks } }];
Obtenha informações sobre os pontos de referência reconhecidos
Se o reconhecimento de pontos de referência for bem-sucedido, uma matriz de objetosVisionCloudLandmark
será passada para o manipulador de conclusão. De cada objeto você pode obter informações sobre um ponto de referência reconhecido na imagem.Por exemplo:
Rápido
for landmark in landmarks { let landmarkDesc = landmark.landmark let boundingPoly = landmark.frame let entityId = landmark.entityId // A landmark can have multiple locations: for example, the location the image // was taken, and the location of the landmark depicted. for location in landmark.locations { let latitude = location.latitude let longitude = location.longitude } let confidence = landmark.confidence }
Objetivo-C
for (FIRVisionCloudLandmark *landmark in landmarks) { NSString *landmarkDesc = landmark.landmark; CGRect frame = landmark.frame; NSString *entityId = landmark.entityId; // A landmark can have multiple locations: for example, the location the image // was taken, and the location of the landmark depicted. for (FIRVisionLatitudeLongitude *location in landmark.locations) { double latitude = [location.latitude doubleValue]; double longitude = [location.longitude doubleValue]; } float confidence = [landmark.confidence floatValue]; }
Próximos passos
- Antes de implantar em produção um aplicativo que usa uma API do Cloud, você deve seguir algumas etapas adicionais para evitar e mitigar o efeito do acesso não autorizado à API .