Bord d'AutoML Vision
Créez des modèles de classification d'images personnalisés à partir de vos propres données d'entraînement avec AutoML Vision Edge.
Si vous souhaitez reconnaître le contenu d'une image, une option consiste à utiliser l'API d'étiquetage d'image sur l'appareil ou l'API de détection d'objet sur l'appareil de ML Kit. Les modèles utilisés par ces API sont conçus pour un usage général et sont formés pour reconnaître les concepts les plus courants dans les photos.
Si vous avez besoin d'un modèle d'étiquetage d'images ou de détection d'objets plus spécialisé, couvrant plus en détail un domaine de concepts plus restreint (par exemple, un modèle permettant de distinguer les espèces de fleurs ou les types d'aliments), vous pouvez utiliser Firebase ML et AutoML Vision Edge pour vous entraîner. un modèle avec vos propres images et catégories. Le modèle personnalisé est entraîné dans Google Cloud et, une fois prêt, il est entièrement utilisé sur l'appareil.
Premiers pas avec l'étiquetage d'images Premiers pas avec la détection d'objets
Capacités clés
Entraîner des modèles basés sur vos données | Entraînez automatiquement des modèles d'étiquetage d'images personnalisés et de détection d'objets pour reconnaître les étiquettes qui vous intéressent, à l'aide de vos données d'entraînement. |
Hébergement de modèles intégré | Hébergez vos modèles avec Firebase et chargez-les au moment de l'exécution. En hébergeant le modèle sur Firebase, vous pouvez vous assurer que les utilisateurs disposent du dernier modèle sans publier une nouvelle version de l'application. Et, bien sûr, vous pouvez également regrouper le modèle avec votre application, afin qu'il soit immédiatement disponible lors de l'installation. |
Chemin de mise en œuvre
Rassembler les données de formation | Rassemblez un ensemble de données d'exemples de chaque étiquette que vous souhaitez que votre modèle reconnaisse. | |
Former un nouveau modèle | Dans la console Google Cloud, importez vos données d'entraînement et utilisez-les pour entraîner un nouveau modèle. | |
Utilisez le modèle dans votre application | Regroupez le modèle avec votre application ou téléchargez-le depuis Firebase lorsque vous en avez besoin. Ensuite, utilisez le modèle pour étiqueter les images sur l'appareil. |
Prix et limites
Pour entraîner des modèles personnalisés avec AutoML Vision Edge, vous devez bénéficier du plan de paiement à l'utilisation (Blaze).
Ensembles de données | Facturé selon les tarifs Cloud Storage |
---|---|
Images par ensemble de données | 1 000 000 |
Heures de formation | Aucune limite par modèle |
Prochaines étapes
- Découvrez comment entraîner un modèle d'étiquetage d'image .
- Découvrez comment entraîner un modèle de détection d'objets .