Catch up on everything announced at Firebase Summit, and learn how Firebase can help you accelerate app development and run your app with confidence. Learn More
Restez organisé à l'aide des collections Enregistrez et classez les contenus selon vos préférences.

AutoML Vision Edge

Créez des modèles de classification d'images personnalisés à partir de vos propres données d'entraînement avec AutoML Vision Edge.

Si vous souhaitez reconnaître le contenu d'une image, une option consiste à utiliser l'API d'étiquetage d'image sur l'appareil de ML Kit ou l'API de détection d'objet sur l'appareil . Les modèles utilisés par ces API sont conçus pour une utilisation générale et sont formés pour reconnaître les concepts les plus courants dans les photos.

Si vous avez besoin d'un modèle d'étiquetage d'image ou de détection d'objets plus spécialisé, couvrant plus en détail un domaine de concepts plus restreint (par exemple, un modèle permettant de distinguer les espèces de fleurs ou les types d'aliments), vous pouvez utiliser Firebase ML et AutoML Vision Edge pour vous entraîner. un modèle avec vos propres images et catégories. Le modèle personnalisé est formé dans Google Cloud, et une fois qu'il est prêt, il est entièrement utilisé sur l'appareil.

Premiers pas avec l'étiquetage d'images Premiers pas avec la détection d'objets

Capacités clés

Former des modèles basés sur vos données

Entraînez automatiquement des modèles d'étiquetage d'image et de détection d'objets personnalisés pour reconnaître les étiquettes qui vous intéressent, à l'aide de vos données d'apprentissage.

Hébergement de modèle intégré

Hébergez vos modèles avec Firebase et chargez-les au moment de l'exécution. En hébergeant le modèle sur Firebase, vous pouvez vous assurer que les utilisateurs disposent du dernier modèle sans publier une nouvelle version de l'application.

Et, bien sûr, vous pouvez également regrouper le modèle avec votre application, afin qu'il soit immédiatement disponible lors de l'installation.

Chemin de mise en œuvre

Assembler les données d'entraînement Rassemblez un ensemble de données d'exemples de chaque étiquette que vous souhaitez que votre modèle reconnaisse.
Former un nouveau modèle Dans Google Cloud Console, importez vos données d'entraînement et utilisez-les pour entraîner un nouveau modèle.
Utiliser le modèle dans votre application Regroupez le modèle avec votre application ou téléchargez-le depuis Firebase lorsque vous en avez besoin. Ensuite, utilisez le modèle pour étiqueter les images sur l'appareil.

Tarification et limites

Pour entraîner des modèles personnalisés avec AutoML Vision Edge, vous devez avoir souscrit au forfait de paiement à l'utilisation (Blaze).

Jeux de données Facturation selon les tarifs Cloud Storage
Images par jeu de données 1 000 000
Heures de formation Aucune limite par modèle

Prochaines étapes