Requêtes de données géographiques

De nombreuses applications possèdent des documents indexés par des emplacements physiques. Par exemple, votre application peut permettre aux utilisateurs de parcourir des magasins à proximité de leur emplacement actuel.

Solution : Geohashes

Geohash est un système permettant d'encoder une paire (latitude, longitude) en une seule chaîne Base32. Dans le système Geohash, le monde est divisé en une grille rectangulaire. Chaque caractère d'une chaîne Geohash spécifie l'une des 32 subdivisions du hachage de préfixe. Par exemple, le Geohash abcd correspond à l'un des 32 hachages de quatre caractères entièrement contenus dans le Geohash abc plus grand.

Plus le préfixe partagé entre deux hachages est le plus proche, plus ils sont proches l'un de l'autre. Par exemple, abcdef est plus proche de abcdeg que abcdff. Mais l'inverse n'est pas vrai ! Deux zones très proches peuvent être proches l'une de l'autre tout en ayant des Geohashes très différents :

Geohashes éloignés les uns des autres

Nous pouvons utiliser des géocodes pour stocker et interroger des documents par position dans Cloud Firestore avec une efficacité raisonnable, tout en ne nécessitant qu'un seul champ indexé.

Installer la bibliothèque d'aide

La création et l'analyse de Geohashes impliquent des calculs complexes. Nous avons donc créé des bibliothèques d'aide pour extraire les parties les plus complexes sur Android, Apple et Web :

Web

// Install from NPM. If you prefer to use a static .js file visit
// https://github.com/firebase/geofire-js/releases and download
// geofire-common.min.js from the latest version
npm install --save geofire-common

Web

// Install from NPM. If you prefer to use a static .js file visit
// https://github.com/firebase/geofire-js/releases and download
// geofire-common.min.js from the latest version
npm install --save geofire-common

Swift

Remarque : Ce produit n'est pas disponible sur les cibles watchOS et App Clip.
// Ajoutez ceci à votre pod Podfile "GeoFire/Utils"

Kotlin

// Add this to your app/build.gradle
implementation 'com.firebase:geofire-android-common:3.2.0'

Java

// Add this to your app/build.gradle
implementation 'com.firebase:geofire-android-common:3.1.0'

Geohashes de magasins

Pour chaque document que vous souhaitez indexer par emplacement, vous devez stocker un champ Geohash :

Web

import { doc, updateDoc } from 'firebase/firestore';

// Compute the GeoHash for a lat/lng point
const lat = 51.5074;
const lng = 0.1278;
const hash = geofire.geohashForLocation([lat, lng]);

// Add the hash and the lat/lng to the document. We will use the hash
// for queries and the lat/lng for distance comparisons.
const londonRef = doc(db, 'cities', 'LON');
await updateDoc(londonRef, {
  geohash: hash,
  lat: lat,
  lng: lng
});

Web

// Compute the GeoHash for a lat/lng point
const lat = 51.5074;
const lng = 0.1278;
const hash = geofire.geohashForLocation([lat, lng]);

// Add the hash and the lat/lng to the document. We will use the hash
// for queries and the lat/lng for distance comparisons.
const londonRef = db.collection('cities').doc('LON');
londonRef.update({
  geohash: hash,
  lat: lat,
  lng: lng
}).then(() => {
  // ...
});

Swift

Remarque : Ce produit n'est pas disponible sur les cibles watchOS et App Clip.
// Compute the GeoHash for a lat/lng point
let latitude = 51.5074
let longitude = 0.12780
let location = CLLocationCoordinate2D(latitude: latitude, longitude: longitude)

let hash = GFUtils.geoHash(forLocation: location)

// Add the hash and the lat/lng to the document. We will use the hash
// for queries and the lat/lng for distance comparisons.
let documentData: [String: Any] = [
  "geohash": hash,
  "lat": latitude,
  "lng": longitude
]

let londonRef = db.collection("cities").document("LON")
londonRef.updateData(documentData) { error in
  // ...
}

Kotlin

// Compute the GeoHash for a lat/lng point
val lat = 51.5074
val lng = 0.1278
val hash = GeoFireUtils.getGeoHashForLocation(GeoLocation(lat, lng))

// Add the hash and the lat/lng to the document. We will use the hash
// for queries and the lat/lng for distance comparisons.
val updates: MutableMap<String, Any> = mutableMapOf(
    "geohash" to hash,
    "lat" to lat,
    "lng" to lng,
)
val londonRef = db.collection("cities").document("LON")
londonRef.update(updates)
    .addOnCompleteListener {
        // ...
    }

Java

// Compute the GeoHash for a lat/lng point
double lat = 51.5074;
double lng = 0.1278;
String hash = GeoFireUtils.getGeoHashForLocation(new GeoLocation(lat, lng));

// Add the hash and the lat/lng to the document. We will use the hash
// for queries and the lat/lng for distance comparisons.
Map<String, Object> updates = new HashMap<>();
updates.put("geohash", hash);
updates.put("lat", lat);
updates.put("lng", lng);

DocumentReference londonRef = db.collection("cities").document("LON");
londonRef.update(updates)
        .addOnCompleteListener(new OnCompleteListener<Void>() {
            @Override
            public void onComplete(@NonNull Task<Void> task) {
                // ...
            }
        });

Geohashes de requêtes

Les Geohashes nous permettent d'estimer les requêtes de région en joignant un ensemble de requêtes dans le champ Geohash, puis en filtrant certains faux positifs :

Web

import { collection, query, orderBy, startAt, endAt, getDocs } from 'firebase/firestore';

// Find cities within 50km of London
const center = [51.5074, 0.1278];
const radiusInM = 50 * 1000;

// Each item in 'bounds' represents a startAt/endAt pair. We have to issue
// a separate query for each pair. There can be up to 9 pairs of bounds
// depending on overlap, but in most cases there are 4.
const bounds = geofire.geohashQueryBounds(center, radiusInM);
const promises = [];
for (const b of bounds) {
  const q = query(
    collection(db, 'cities'), 
    orderBy('geohash'), 
    startAt(b[0]), 
    endAt(b[1]));

  promises.push(getDocs(q));
}

// Collect all the query results together into a single list
const snapshots = await Promise.all(promises);

const matchingDocs = [];
for (const snap of snapshots) {
  for (const doc of snap.docs) {
    const lat = doc.get('lat');
    const lng = doc.get('lng');

    // We have to filter out a few false positives due to GeoHash
    // accuracy, but most will match
    const distanceInKm = geofire.distanceBetween([lat, lng], center);
    const distanceInM = distanceInKm * 1000;
    if (distanceInM <= radiusInM) {
      matchingDocs.push(doc);
    }
  }
}

Web

// Find cities within 50km of London
const center = [51.5074, 0.1278];
const radiusInM = 50 * 1000;

// Each item in 'bounds' represents a startAt/endAt pair. We have to issue
// a separate query for each pair. There can be up to 9 pairs of bounds
// depending on overlap, but in most cases there are 4.
const bounds = geofire.geohashQueryBounds(center, radiusInM);
const promises = [];
for (const b of bounds) {
  const q = db.collection('cities')
    .orderBy('geohash')
    .startAt(b[0])
    .endAt(b[1]);

  promises.push(q.get());
}

// Collect all the query results together into a single list
Promise.all(promises).then((snapshots) => {
  const matchingDocs = [];

  for (const snap of snapshots) {
    for (const doc of snap.docs) {
      const lat = doc.get('lat');
      const lng = doc.get('lng');

      // We have to filter out a few false positives due to GeoHash
      // accuracy, but most will match
      const distanceInKm = geofire.distanceBetween([lat, lng], center);
      const distanceInM = distanceInKm * 1000;
      if (distanceInM <= radiusInM) {
        matchingDocs.push(doc);
      }
    }
  }

  return matchingDocs;
}).then((matchingDocs) => {
  // Process the matching documents
  // ...
});

Swift

Remarque : Ce produit n'est pas disponible sur les cibles watchOS et App Clip.
// Find cities within 50km of London
let center = CLLocationCoordinate2D(latitude: 51.5074, longitude: 0.1278)
let radiusInM: Double = 50 * 1000

// Each item in 'bounds' represents a startAt/endAt pair. We have to issue
// a separate query for each pair. There can be up to 9 pairs of bounds
// depending on overlap, but in most cases there are 4.
let queryBounds = GFUtils.queryBounds(forLocation: center,
                                      withRadius: radiusInM)
let queries = queryBounds.map { bound -> Query in
  return db.collection("cities")
    .order(by: "geohash")
    .start(at: [bound.startValue])
    .end(at: [bound.endValue])
}

@Sendable func fetchMatchingDocs(from query: Query,
                       center: CLLocationCoordinate2D,
                       radiusInMeters: Double) async throws -> [QueryDocumentSnapshot] {
  let snapshot = try await query.getDocuments()
  // Collect all the query results together into a single list
  return snapshot.documents.filter { document in
    let lat = document.data()["lat"] as? Double ?? 0
    let lng = document.data()["lng"] as? Double ?? 0
    let coordinates = CLLocation(latitude: lat, longitude: lng)
    let centerPoint = CLLocation(latitude: center.latitude, longitude: center.longitude)

    // We have to filter out a few false positives due to GeoHash accuracy, but
    // most will match
    let distance = GFUtils.distance(from: centerPoint, to: coordinates)
    return distance <= radiusInM
  }
}

// After all callbacks have executed, matchingDocs contains the result. Note that this code
// executes all queries serially, which may not be optimal for performance.
do {
  let matchingDocs = try await withThrowingTaskGroup(of: [QueryDocumentSnapshot].self) { group -> [QueryDocumentSnapshot] in
    for query in queries {
      group.addTask {
        try await fetchMatchingDocs(from: query, center: center, radiusInMeters: radiusInM)
      }
    }
    var matchingDocs = [QueryDocumentSnapshot]()
    for try await documents in group {
      matchingDocs.append(contentsOf: documents)
    }
    return matchingDocs
  }

  print("Docs matching geoquery: \(matchingDocs)")
} catch {
  print("Unable to fetch snapshot data. \(error)")
}

Kotlin

// Find cities within 50km of London
val center = GeoLocation(51.5074, 0.1278)
val radiusInM = 50.0 * 1000.0

// Each item in 'bounds' represents a startAt/endAt pair. We have to issue
// a separate query for each pair. There can be up to 9 pairs of bounds
// depending on overlap, but in most cases there are 4.
val bounds = GeoFireUtils.getGeoHashQueryBounds(center, radiusInM)
val tasks: MutableList<Task<QuerySnapshot>> = ArrayList()
for (b in bounds) {
    val q = db.collection("cities")
        .orderBy("geohash")
        .startAt(b.startHash)
        .endAt(b.endHash)
    tasks.add(q.get())
}

// Collect all the query results together into a single list
Tasks.whenAllComplete(tasks)
    .addOnCompleteListener {
        val matchingDocs: MutableList<DocumentSnapshot> = ArrayList()
        for (task in tasks) {
            val snap = task.result
            for (doc in snap!!.documents) {
                val lat = doc.getDouble("lat")!!
                val lng = doc.getDouble("lng")!!

                // We have to filter out a few false positives due to GeoHash
                // accuracy, but most will match
                val docLocation = GeoLocation(lat, lng)
                val distanceInM = GeoFireUtils.getDistanceBetween(docLocation, center)
                if (distanceInM <= radiusInM) {
                    matchingDocs.add(doc)
                }
            }
        }

        // matchingDocs contains the results
        // ...
    }

Java

// Find cities within 50km of London
final GeoLocation center = new GeoLocation(51.5074, 0.1278);
final double radiusInM = 50 * 1000;

// Each item in 'bounds' represents a startAt/endAt pair. We have to issue
// a separate query for each pair. There can be up to 9 pairs of bounds
// depending on overlap, but in most cases there are 4.
List<GeoQueryBounds> bounds = GeoFireUtils.getGeoHashQueryBounds(center, radiusInM);
final List<Task<QuerySnapshot>> tasks = new ArrayList<>();
for (GeoQueryBounds b : bounds) {
    Query q = db.collection("cities")
            .orderBy("geohash")
            .startAt(b.startHash)
            .endAt(b.endHash);

    tasks.add(q.get());
}

// Collect all the query results together into a single list
Tasks.whenAllComplete(tasks)
        .addOnCompleteListener(new OnCompleteListener<List<Task<?>>>() {
            @Override
            public void onComplete(@NonNull Task<List<Task<?>>> t) {
                List<DocumentSnapshot> matchingDocs = new ArrayList<>();

                for (Task<QuerySnapshot> task : tasks) {
                    QuerySnapshot snap = task.getResult();
                    for (DocumentSnapshot doc : snap.getDocuments()) {
                        double lat = doc.getDouble("lat");
                        double lng = doc.getDouble("lng");

                        // We have to filter out a few false positives due to GeoHash
                        // accuracy, but most will match
                        GeoLocation docLocation = new GeoLocation(lat, lng);
                        double distanceInM = GeoFireUtils.getDistanceBetween(docLocation, center);
                        if (distanceInM <= radiusInM) {
                            matchingDocs.add(doc);
                        }
                    }
                }

                // matchingDocs contains the results
                // ...
            }
        });

Limites

L'utilisation de Geohashes pour les requêtes d'emplacements offre de nouvelles fonctionnalités, mais présente ses propres limites :

  • Faux positifs : l'interrogation par Geohash n'est pas exacte et vous devez filtrer les résultats faux positifs côté client. Ces lectures supplémentaires augmentent les coûts et la latence de votre application.
  • Cas d'utilisation : cette méthode de requête repose sur l'estimation de la distance entre les lignes de longitude/latitude. La précision de cette estimation diminue à mesure que les points se rapprochent du pôle Nord ou du pôle Sud, ce qui signifie que les requêtes Geohash ont davantage de faux positifs à des latitudes extrêmes.