您可以使用 ML Kit 偵測圖片和影片中的臉孔。
事前準備
- 如果您尚未將 Firebase 新增至 Android 專案,請新增 Firebase。
- 將 ML Kit Android 程式庫的依附元件新增至模組 (應用程式層級) Gradle 檔案 (通常為
app/build.gradle
):apply plugin: 'com.android.application' apply plugin: 'com.google.gms.google-services' dependencies { // ... implementation 'com.google.firebase:firebase-ml-vision:24.0.3' // If you want to detect face contours (landmark detection and classification // don't require this additional model): implementation 'com.google.firebase:firebase-ml-vision-face-model:20.0.1' }
-
選用但建議採用:設定應用程式,在從 Play 商店安裝後,自動將 ML 模型下載到裝置。
如要這麼做,請在應用程式的
AndroidManifest.xml
檔案中加入下列宣告: 如果您未啟用安裝時間模型下載功能,系統會在您第一次執行偵測器時下載模型。在下載完成前提出的要求不會產生任何結果。<application ...> ... <meta-data android:name="com.google.firebase.ml.vision.DEPENDENCIES" android:value="face" /> <!-- To use multiple models: android:value="face,model2,model3" --> </application>
輸入圖片規範
為了讓 ML Kit 準確偵測臉孔,輸入圖片必須包含由足夠像素資料代表的臉孔。一般來說,您要在圖片中偵測的每張臉部圖片,至少應為 100 x 100 像素。如果您想偵測臉孔輪廓,ML Kit 需要更高解析度的輸入內容:每張臉孔至少應為 200x200 像素。
如果您要在即時應用程式中偵測臉孔,也許也要考慮輸入圖片的整體尺寸。較小的圖片可加快處理速度,因此為了減少延遲,請以較低解析度 (請參考上述精確度要求) 擷取圖片,並確保拍攝對象的臉部佔據盡可能大的圖片空間。另請參閱改善即時效能的訣竅。
對焦不佳可能會影響準確度。如果您無法取得可接受的結果,請嘗試要求使用者重新拍攝圖片。
臉部相對於攝影機的方向也會影響 ML Kit 偵測到的臉部特徵。請參閱「臉部偵測概念」。
1. 設定臉部偵測器
在將臉部偵測功能套用至圖片之前,如果您想變更臉部偵測器的任何預設設定,請使用FirebaseVisionFaceDetectorOptions
物件指定這些設定。您可以變更下列設定:
設定 | |
---|---|
效能模式 |
FAST (預設)
| ACCURATE
在偵測臉部時,優先考量速度或準確度。 |
偵測地標 |
NO_LANDMARKS (預設)
| ALL_LANDMARKS
是否嘗試辨識臉部「地標」:眼睛、耳朵、鼻子、臉頰、嘴巴等。 |
偵測輪廓 |
NO_CONTOURS (預設)
| ALL_CONTOURS
是否要偵測臉部特徵的輪廓。系統只會偵測圖片中最顯眼的臉孔輪廓。 |
將臉孔分類 |
NO_CLASSIFICATIONS (預設)
| ALL_CLASSIFICATIONS
是否將臉部分類為「微笑」和「眼睛張開」等類別。 |
臉孔大小下限 |
float (預設值:0.1f )
相對於圖片,要偵測的臉孔最小大小。 |
啟用臉部追蹤功能 |
false (預設) | true
是否要為臉部指派 ID,以便在多張圖片中追蹤臉部。 請注意,啟用輪廓偵測功能後,系統只會偵測到一個臉孔,因此臉部追蹤功能不會產生有用的結果。基於這個原因,為了提升偵測速度,請勿同時啟用輪廓偵測和臉部追蹤功能。 |
例如:
Java
// High-accuracy landmark detection and face classification FirebaseVisionFaceDetectorOptions highAccuracyOpts = new FirebaseVisionFaceDetectorOptions.Builder() .setPerformanceMode(FirebaseVisionFaceDetectorOptions.ACCURATE) .setLandmarkMode(FirebaseVisionFaceDetectorOptions.ALL_LANDMARKS) .setClassificationMode(FirebaseVisionFaceDetectorOptions.ALL_CLASSIFICATIONS) .build(); // Real-time contour detection of multiple faces FirebaseVisionFaceDetectorOptions realTimeOpts = new FirebaseVisionFaceDetectorOptions.Builder() .setContourMode(FirebaseVisionFaceDetectorOptions.ALL_CONTOURS) .build();
Kotlin
// High-accuracy landmark detection and face classification val highAccuracyOpts = FirebaseVisionFaceDetectorOptions.Builder() .setPerformanceMode(FirebaseVisionFaceDetectorOptions.ACCURATE) .setLandmarkMode(FirebaseVisionFaceDetectorOptions.ALL_LANDMARKS) .setClassificationMode(FirebaseVisionFaceDetectorOptions.ALL_CLASSIFICATIONS) .build() // Real-time contour detection of multiple faces val realTimeOpts = FirebaseVisionFaceDetectorOptions.Builder() .setContourMode(FirebaseVisionFaceDetectorOptions.ALL_CONTOURS) .build()
2. 執行臉部偵測器
如要偵測圖片中的臉孔,請使用Bitmap
、media.Image
、ByteBuffer
、位元組陣列或裝置上的檔案,建立 FirebaseVisionImage
物件。接著,將 FirebaseVisionImage
物件傳遞至 FirebaseVisionFaceDetector
的 detectInImage
方法。
如要進行臉部辨識,圖片的尺寸至少應為 480x360 像素。如果您要即時辨識人臉,以這個最小解析度擷取影格有助於縮短延遲時間。
從圖片建立
FirebaseVisionImage
物件。-
如要從
media.Image
物件建立FirebaseVisionImage
物件 (例如從裝置相機擷取圖片時),請將media.Image
物件和圖片的旋轉角度傳遞至FirebaseVisionImage.fromMediaImage()
。如果您使用 CameraX 程式庫,
OnImageCapturedListener
和ImageAnalysis.Analyzer
類別會為您計算旋轉值,因此您只需在呼叫FirebaseVisionImage.fromMediaImage()
之前,將旋轉值轉換為 ML Kit 的ROTATION_
常數:Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { private int degreesToFirebaseRotation(int degrees) { switch (degrees) { case 0: return FirebaseVisionImageMetadata.ROTATION_0; case 90: return FirebaseVisionImageMetadata.ROTATION_90; case 180: return FirebaseVisionImageMetadata.ROTATION_180; case 270: return FirebaseVisionImageMetadata.ROTATION_270; default: throw new IllegalArgumentException( "Rotation must be 0, 90, 180, or 270."); } } @Override public void analyze(ImageProxy imageProxy, int degrees) { if (imageProxy == null || imageProxy.getImage() == null) { return; } Image mediaImage = imageProxy.getImage(); int rotation = degreesToFirebaseRotation(degrees); FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation); // Pass image to an ML Kit Vision API // ... } }
Kotlin
private class YourImageAnalyzer : ImageAnalysis.Analyzer { private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) { 0 -> FirebaseVisionImageMetadata.ROTATION_0 90 -> FirebaseVisionImageMetadata.ROTATION_90 180 -> FirebaseVisionImageMetadata.ROTATION_180 270 -> FirebaseVisionImageMetadata.ROTATION_270 else -> throw Exception("Rotation must be 0, 90, 180, or 270.") } override fun analyze(imageProxy: ImageProxy?, degrees: Int) { val mediaImage = imageProxy?.image val imageRotation = degreesToFirebaseRotation(degrees) if (mediaImage != null) { val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation) // Pass image to an ML Kit Vision API // ... } } }
如果您未使用可提供圖片旋轉角度的相機程式庫,可以根據裝置旋轉角度和裝置中相機感應器的方向計算:
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 90); ORIENTATIONS.append(Surface.ROTATION_90, 0); ORIENTATIONS.append(Surface.ROTATION_180, 270); ORIENTATIONS.append(Surface.ROTATION_270, 180); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, Context context) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360; // Return the corresponding FirebaseVisionImageMetadata rotation value. int result; switch (rotationCompensation) { case 0: result = FirebaseVisionImageMetadata.ROTATION_0; break; case 90: result = FirebaseVisionImageMetadata.ROTATION_90; break; case 180: result = FirebaseVisionImageMetadata.ROTATION_180; break; case 270: result = FirebaseVisionImageMetadata.ROTATION_270; break; default: result = FirebaseVisionImageMetadata.ROTATION_0; Log.e(TAG, "Bad rotation value: " + rotationCompensation); } return result; }
Kotlin
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 90) ORIENTATIONS.append(Surface.ROTATION_90, 0) ORIENTATIONS.append(Surface.ROTATION_180, 270) ORIENTATIONS.append(Surface.ROTATION_270, 180) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360 // Return the corresponding FirebaseVisionImageMetadata rotation value. val result: Int when (rotationCompensation) { 0 -> result = FirebaseVisionImageMetadata.ROTATION_0 90 -> result = FirebaseVisionImageMetadata.ROTATION_90 180 -> result = FirebaseVisionImageMetadata.ROTATION_180 270 -> result = FirebaseVisionImageMetadata.ROTATION_270 else -> { result = FirebaseVisionImageMetadata.ROTATION_0 Log.e(TAG, "Bad rotation value: $rotationCompensation") } } return result }
接著,將
media.Image
物件和旋轉值傳遞至FirebaseVisionImage.fromMediaImage()
:Java
FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
Kotlin
val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
- 如要從檔案 URI 建立
FirebaseVisionImage
物件,請將應用程式背景資訊和檔案 URI 傳遞至FirebaseVisionImage.fromFilePath()
。這在您使用ACTION_GET_CONTENT
意圖,提示使用者從相片庫應用程式中選取圖片時,非常實用。Java
FirebaseVisionImage image; try { image = FirebaseVisionImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
Kotlin
val image: FirebaseVisionImage try { image = FirebaseVisionImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
- 如要從
ByteBuffer
或位元組陣列建立FirebaseVisionImage
物件,請先計算圖片旋轉角度,如上文所述的media.Image
輸入資料。接著,請建立
FirebaseVisionImageMetadata
物件,其中包含圖片的高度、寬度、顏色編碼格式和旋轉角度:Java
FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build();
Kotlin
val metadata = FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build()
使用緩衝區或陣列和中繼資料物件,建立
FirebaseVisionImage
物件:Java
FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata); // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
Kotlin
val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata) // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
- 如要從
Bitmap
物件建立FirebaseVisionImage
物件,請按照下列步驟操作:Java
FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
Kotlin
val image = FirebaseVisionImage.fromBitmap(bitmap)
Bitmap
物件所代表的圖片必須是直立的,不需要額外旋轉。
-
取得
FirebaseVisionFaceDetector
的例項:Java
FirebaseVisionFaceDetector detector = FirebaseVision.getInstance() .getVisionFaceDetector(options);
Kotlin
val detector = FirebaseVision.getInstance() .getVisionFaceDetector(options)
最後,將圖片傳遞至
detectInImage
方法:Java
Task<List<FirebaseVisionFace>> result = detector.detectInImage(image) .addOnSuccessListener( new OnSuccessListener<List<FirebaseVisionFace>>() { @Override public void onSuccess(List<FirebaseVisionFace> faces) { // Task completed successfully // ... } }) .addOnFailureListener( new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
Kotlin
val result = detector.detectInImage(image) .addOnSuccessListener { faces -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
3. 取得偵測到的臉孔相關資訊
如果臉部辨識作業成功,系統會將FirebaseVisionFace
物件清單傳遞至成功事件監聽器。每個 FirebaseVisionFace
物件都代表在圖片中偵測到的臉孔。您可以為每張臉孔取得輸入圖片中的邊界座標,以及您設定臉部偵測器要尋找的任何其他資訊。例如:
Java
for (FirebaseVisionFace face : faces) { Rect bounds = face.getBoundingBox(); float rotY = face.getHeadEulerAngleY(); // Head is rotated to the right rotY degrees float rotZ = face.getHeadEulerAngleZ(); // Head is tilted sideways rotZ degrees // If landmark detection was enabled (mouth, ears, eyes, cheeks, and // nose available): FirebaseVisionFaceLandmark leftEar = face.getLandmark(FirebaseVisionFaceLandmark.LEFT_EAR); if (leftEar != null) { FirebaseVisionPoint leftEarPos = leftEar.getPosition(); } // If contour detection was enabled: List<FirebaseVisionPoint> leftEyeContour = face.getContour(FirebaseVisionFaceContour.LEFT_EYE).getPoints(); List<FirebaseVisionPoint> upperLipBottomContour = face.getContour(FirebaseVisionFaceContour.UPPER_LIP_BOTTOM).getPoints(); // If classification was enabled: if (face.getSmilingProbability() != FirebaseVisionFace.UNCOMPUTED_PROBABILITY) { float smileProb = face.getSmilingProbability(); } if (face.getRightEyeOpenProbability() != FirebaseVisionFace.UNCOMPUTED_PROBABILITY) { float rightEyeOpenProb = face.getRightEyeOpenProbability(); } // If face tracking was enabled: if (face.getTrackingId() != FirebaseVisionFace.INVALID_ID) { int id = face.getTrackingId(); } }
Kotlin
for (face in faces) { val bounds = face.boundingBox val rotY = face.headEulerAngleY // Head is rotated to the right rotY degrees val rotZ = face.headEulerAngleZ // Head is tilted sideways rotZ degrees // If landmark detection was enabled (mouth, ears, eyes, cheeks, and // nose available): val leftEar = face.getLandmark(FirebaseVisionFaceLandmark.LEFT_EAR) leftEar?.let { val leftEarPos = leftEar.position } // If contour detection was enabled: val leftEyeContour = face.getContour(FirebaseVisionFaceContour.LEFT_EYE).points val upperLipBottomContour = face.getContour(FirebaseVisionFaceContour.UPPER_LIP_BOTTOM).points // If classification was enabled: if (face.smilingProbability != FirebaseVisionFace.UNCOMPUTED_PROBABILITY) { val smileProb = face.smilingProbability } if (face.rightEyeOpenProbability != FirebaseVisionFace.UNCOMPUTED_PROBABILITY) { val rightEyeOpenProb = face.rightEyeOpenProbability } // If face tracking was enabled: if (face.trackingId != FirebaseVisionFace.INVALID_ID) { val id = face.trackingId } }
臉部輪廓示例
啟用臉部輪廓偵測功能後,系統會為每個偵測到的臉部特徵提供點陣列清單。這些點代表地圖項目的形狀。如要進一步瞭解輪廓的表示方式,請參閱「人臉偵測概念總覽」。
下圖說明這些點如何對應到臉部 (按一下圖片可放大):
即時臉部偵測
如要在即時應用程式中使用臉部偵測功能,請按照下列指南取得最佳影格速率:
設定臉部偵測器,以便使用臉部輪廓偵測或分類和地標偵測功能 (但不能同時使用):
輪廓偵測
地標偵測
分類
地標偵測和分類
輪廓偵測和地標偵測
輪廓偵測和分類
輪廓偵測、地標偵測和分類啟用
FAST
模式 (預設為啟用)。建議您以較低解析度拍攝相片。不過,請注意這個 API 的圖片大小規定。
- 限制對偵測器的呼叫。如果在偵測器執行期間有新的影片影格可用,請放棄該影格。
- 如果您要使用偵測器的輸出內容,在輸入圖片上疊加圖形,請先從 ML Kit 取得結果,然後在單一步驟中算繪圖片和疊加圖形。這樣一來,您只需為每個輸入影格轉譯一次顯示介面。
-
如果您使用 Camera2 API,請以
ImageFormat.YUV_420_888
格式擷取圖片。如果您使用舊版 Camera API,請以
ImageFormat.NV21
格式擷取圖片。