Wykrywanie twarzy za pomocą ML Kit na Androidzie

Za pomocą pakietu ML Kit możesz wykrywać twarze na obrazach i w filmach.

Zanim zaczniesz

  1. Jeśli jeszcze nie masz tego za sobą, dodaj Firebase do swojego projektu na Androida.
  2. Dodaj do modułu zależności między bibliotekami ML Kit na Androida Plik Gradle (na poziomie aplikacji) (zwykle app/build.gradle):
    apply plugin: 'com.android.application'
    apply plugin: 'com.google.gms.google-services'
    
    dependencies {
      // ...
    
      implementation 'com.google.firebase:firebase-ml-vision:24.0.3'
      // If you want to detect face contours (landmark detection and classification
      // don't require this additional model):
      implementation 'com.google.firebase:firebase-ml-vision-face-model:20.0.1'
    }
    
  3. Opcjonalne, ale zalecane: skonfiguruj automatyczne pobieranie aplikacji. po zainstalowaniu aplikacji ze Sklepu Play na urządzeniu.

    Aby to zrobić, dodaj tę deklarację do Plik AndroidManifest.xml:

    <application ...>
      ...
      <meta-data
          android:name="com.google.firebase.ml.vision.DEPENDENCIES"
          android:value="face" />
      <!-- To use multiple models: android:value="face,model2,model3" -->
    </application>
    
    Jeśli nie włączysz pobierania modelu w czasie instalacji, model zostanie pobrane przy pierwszym uruchomieniu wzorca. Żądania przesyłane przed pobieranie nie da żadnych wyników.

Wytyczne dotyczące obrazu wejściowego

Aby ML Kit mógł precyzyjnie wykrywać twarze, obrazy wejściowe muszą zawierać twarze które są reprezentowane przez wystarczającą ilość danych pikseli. Ogólnie rzecz biorąc, każda twarz, którą chcesz pokazać, powinna mieć rozmiar co najmniej 100 x 100 pikseli. Jeśli chcesz wykrywać aby określić kontury twarzy, ML Kit wymaga wyższej rozdzielczości: powinien wynosić co najmniej 200 x 200 pikseli.

Jeśli wykrywasz twarze w aplikacji działającej w czasie rzeczywistym, możesz też aby wziąć pod uwagę ogólne wymiary obrazów wejściowych. Mniejsze obrazy szybsze przetwarzanie, a więc aby zmniejszyć opóźnienie, można robić zdjęcia w niższej rozdzielczości. (pamiętając o powyższych wymaganiach dotyczących dokładności) i upewnij się, że twarz obiektu zajmuje jak najwięcej miejsca na obrazie. Zobacz też Wskazówki, jak zwiększyć skuteczność w czasie rzeczywistym.

Słaba ostrość obrazu może negatywnie wpływać na dokładność. Jeśli nie uzyskujesz akceptowalnych wyników, poproś użytkownika o ponowne zrobienie zdjęcia.

Położenie twarzy w odniesieniu do aparatu może też wpływać na jej wygląd. wykrywanych przez ML Kit. Zobacz Wykrywanie twarzy Pojęcia.

1. Konfigurowanie wykrywania twarzy

Zanim zastosujesz wykrywanie twarzy na zdjęciu, możesz zmienić domyślnych ustawień wykrywania twarzy, określ je za pomocą FirebaseVisionFaceDetectorOptions. Można zmienić następujące ustawienia:

Ustawienia
Tryb wydajności FAST (domyślna) | ACCURATE

Większa szybkość lub dokładność podczas wykrywania twarzy.

Wykrywanie punktów orientacyjnych NO_LANDMARKS (domyślna) | ALL_LANDMARKS

Określa, czy rozpoznać „punkty orientacyjne” twarzy: oczy, uszy, nos, policzki, usta itd.

Rozpoznaj kontury NO_CONTOURS (domyślna) | ALL_CONTOURS

Określa, czy wykrywać kontury rysów twarzy. Kontury są tylko dla najbardziej widocznej twarzy na zdjęciu.

Klasyfikuj twarze NO_CLASSIFICATIONS (domyślna) | ALL_CLASSIFICATIONS

Możliwość sklasyfikowania twarzy w kategoriach, takich jak „uśmiech”, i „oczy otwarte”.

Minimalny rozmiar twarzy float (domyślnie: 0.1f)

Minimalny rozmiar twarzy do wykrycia w odniesieniu do obrazu.

Włącz śledzenie twarzy false (domyślna) | true

Określa, czy przypisywać twarzom identyfikator, który może służyć do śledzenia twarzy na obrazach.

Pamiętaj, że przy włączonym wykrywaniu kontur tylko jedna twarz więc śledzenie twarzy nie da żadnych przydatnych wyników. Do tego celu i aby zwiększyć szybkość wykrywania, nie włączaj obu konturów wykrywaniem oraz śledzeniem twarzy.

Przykład:

Java

// High-accuracy landmark detection and face classification
FirebaseVisionFaceDetectorOptions highAccuracyOpts =
        new FirebaseVisionFaceDetectorOptions.Builder()
                .setPerformanceMode(FirebaseVisionFaceDetectorOptions.ACCURATE)
                .setLandmarkMode(FirebaseVisionFaceDetectorOptions.ALL_LANDMARKS)
                .setClassificationMode(FirebaseVisionFaceDetectorOptions.ALL_CLASSIFICATIONS)
                .build();

// Real-time contour detection of multiple faces
FirebaseVisionFaceDetectorOptions realTimeOpts =
        new FirebaseVisionFaceDetectorOptions.Builder()
                .setContourMode(FirebaseVisionFaceDetectorOptions.ALL_CONTOURS)
                .build();

Kotlin+KTX

// High-accuracy landmark detection and face classification
val highAccuracyOpts = FirebaseVisionFaceDetectorOptions.Builder()
        .setPerformanceMode(FirebaseVisionFaceDetectorOptions.ACCURATE)
        .setLandmarkMode(FirebaseVisionFaceDetectorOptions.ALL_LANDMARKS)
        .setClassificationMode(FirebaseVisionFaceDetectorOptions.ALL_CLASSIFICATIONS)
        .build()

// Real-time contour detection of multiple faces
val realTimeOpts = FirebaseVisionFaceDetectorOptions.Builder()
        .setContourMode(FirebaseVisionFaceDetectorOptions.ALL_CONTOURS)
        .build()

2. Włącz wykrywanie twarzy

Aby wykrywać twarze na obrazie, utwórz obiekt FirebaseVisionImage z obiektu Bitmap, media.Image, ByteBuffer, tablicy bajtów lub pliku w urządzenia. Następnie przekaż obiekt FirebaseVisionImage do funkcji Metoda detectInImage użytkownika FirebaseVisionFaceDetector.

Do rozpoznawania twarzy należy użyć zdjęcia o wymiarach co najmniej 480 x 360 pikseli. Jeśli rozpoznajesz twarze w czasie rzeczywistym i rejestrujesz klatki, przy minimalnej rozdzielczości może pomóc zmniejszyć opóźnienie.

  1. Utwórz obiekt FirebaseVisionImage na podstawie .

    • Aby utworzyć obiekt FirebaseVisionImage na podstawie media.Image, np. podczas przechwytywania obrazu z z aparatu urządzenia, przekazać obiekt media.Image oraz w kierunku FirebaseVisionImage.fromMediaImage().

      Jeśli używasz tagu CameraX, OnImageCapturedListener oraz ImageAnalysis.Analyzer klasy obliczają wartość rotacji więc wystarczy zmienić rotację na jeden z zestawów ML Kit Stały ROTATION_ przed nawiązaniem połączenia FirebaseVisionImage.fromMediaImage():

      Java

      private class YourAnalyzer implements ImageAnalysis.Analyzer {
      
          private int degreesToFirebaseRotation(int degrees) {
              switch (degrees) {
                  case 0:
                      return FirebaseVisionImageMetadata.ROTATION_0;
                  case 90:
                      return FirebaseVisionImageMetadata.ROTATION_90;
                  case 180:
                      return FirebaseVisionImageMetadata.ROTATION_180;
                  case 270:
                      return FirebaseVisionImageMetadata.ROTATION_270;
                  default:
                      throw new IllegalArgumentException(
                              "Rotation must be 0, 90, 180, or 270.");
              }
          }
      
          @Override
          public void analyze(ImageProxy imageProxy, int degrees) {
              if (imageProxy == null || imageProxy.getImage() == null) {
                  return;
              }
              Image mediaImage = imageProxy.getImage();
              int rotation = degreesToFirebaseRotation(degrees);
              FirebaseVisionImage image =
                      FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
              // Pass image to an ML Kit Vision API
              // ...
          }
      }
      

      Kotlin+KTX

      private class YourImageAnalyzer : ImageAnalysis.Analyzer {
          private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) {
              0 -> FirebaseVisionImageMetadata.ROTATION_0
              90 -> FirebaseVisionImageMetadata.ROTATION_90
              180 -> FirebaseVisionImageMetadata.ROTATION_180
              270 -> FirebaseVisionImageMetadata.ROTATION_270
              else -> throw Exception("Rotation must be 0, 90, 180, or 270.")
          }
      
          override fun analyze(imageProxy: ImageProxy?, degrees: Int) {
              val mediaImage = imageProxy?.image
              val imageRotation = degreesToFirebaseRotation(degrees)
              if (mediaImage != null) {
                  val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation)
                  // Pass image to an ML Kit Vision API
                  // ...
              }
          }
      }
      

      Jeśli nie korzystasz z biblioteki aparatu zapewniającej obrót obrazu, może go obliczyć na podstawie obrotu urządzenia i orientacji aparatu czujnik w urządzeniu:

      Java

      private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
      static {
          ORIENTATIONS.append(Surface.ROTATION_0, 90);
          ORIENTATIONS.append(Surface.ROTATION_90, 0);
          ORIENTATIONS.append(Surface.ROTATION_180, 270);
          ORIENTATIONS.append(Surface.ROTATION_270, 180);
      }
      
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      private int getRotationCompensation(String cameraId, Activity activity, Context context)
              throws CameraAccessException {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
          int rotationCompensation = ORIENTATIONS.get(deviceRotation);
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE);
          int sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION);
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360;
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          int result;
          switch (rotationCompensation) {
              case 0:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  break;
              case 90:
                  result = FirebaseVisionImageMetadata.ROTATION_90;
                  break;
              case 180:
                  result = FirebaseVisionImageMetadata.ROTATION_180;
                  break;
              case 270:
                  result = FirebaseVisionImageMetadata.ROTATION_270;
                  break;
              default:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  Log.e(TAG, "Bad rotation value: " + rotationCompensation);
          }
          return result;
      }

      Kotlin+KTX

      private val ORIENTATIONS = SparseIntArray()
      
      init {
          ORIENTATIONS.append(Surface.ROTATION_0, 90)
          ORIENTATIONS.append(Surface.ROTATION_90, 0)
          ORIENTATIONS.append(Surface.ROTATION_180, 270)
          ORIENTATIONS.append(Surface.ROTATION_270, 180)
      }
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      @Throws(CameraAccessException::class)
      private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          val deviceRotation = activity.windowManager.defaultDisplay.rotation
          var rotationCompensation = ORIENTATIONS.get(deviceRotation)
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager
          val sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION)!!
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          val result: Int
          when (rotationCompensation) {
              0 -> result = FirebaseVisionImageMetadata.ROTATION_0
              90 -> result = FirebaseVisionImageMetadata.ROTATION_90
              180 -> result = FirebaseVisionImageMetadata.ROTATION_180
              270 -> result = FirebaseVisionImageMetadata.ROTATION_270
              else -> {
                  result = FirebaseVisionImageMetadata.ROTATION_0
                  Log.e(TAG, "Bad rotation value: $rotationCompensation")
              }
          }
          return result
      }

      Następnie przekaż obiekt media.Image oraz wartość rotacji do FirebaseVisionImage.fromMediaImage():

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);

      Kotlin+KTX

      val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
    • Aby utworzyć obiekt FirebaseVisionImage na podstawie identyfikatora URI pliku, przekaż kontekst aplikacji i identyfikator URI pliku FirebaseVisionImage.fromFilePath() Jest to przydatne, gdy użyj intencji ACTION_GET_CONTENT, aby zachęcić użytkownika do wyboru obraz z aplikacji Galeria.

      Java

      FirebaseVisionImage image;
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri);
      } catch (IOException e) {
          e.printStackTrace();
      }

      Kotlin+KTX

      val image: FirebaseVisionImage
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri)
      } catch (e: IOException) {
          e.printStackTrace()
      }
    • Aby utworzyć obiekt FirebaseVisionImage na podstawie ByteBuffer lub tablicy bajtów, najpierw oblicz wartość obrazu w sposób opisany powyżej dla danych wejściowych media.Image.

      Następnie utwórz obiekt FirebaseVisionImageMetadata określającą wysokość, szerokość i format kodowania kolorów obrazu i rotacja:

      Java

      FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder()
              .setWidth(480)   // 480x360 is typically sufficient for
              .setHeight(360)  // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build();

      Kotlin+KTX

      val metadata = FirebaseVisionImageMetadata.Builder()
              .setWidth(480) // 480x360 is typically sufficient for
              .setHeight(360) // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build()

      Za pomocą bufora lub tablicy oraz obiektu metadanych utwórz FirebaseVisionImage obiekt:

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata);
      // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);

      Kotlin+KTX

      val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata)
      // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
    • Aby utworzyć obiekt FirebaseVisionImage na podstawie Obiekt Bitmap:

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);

      Kotlin+KTX

      val image = FirebaseVisionImage.fromBitmap(bitmap)
      Obraz reprezentowany przez obiekt Bitmap musi być pionowo bez konieczności dodatkowego obracania.
  2. Pobierz instancję FirebaseVisionFaceDetector:

    Java

    FirebaseVisionFaceDetector detector = FirebaseVision.getInstance()
            .getVisionFaceDetector(options);

    Kotlin+KTX

    val detector = FirebaseVision.getInstance()
            .getVisionFaceDetector(options)
  3. Na koniec przekaż obraz do metody detectInImage:

    Java

    Task<List<FirebaseVisionFace>> result =
            detector.detectInImage(image)
                    .addOnSuccessListener(
                            new OnSuccessListener<List<FirebaseVisionFace>>() {
                                @Override
                                public void onSuccess(List<FirebaseVisionFace> faces) {
                                    // Task completed successfully
                                    // ...
                                }
                            })
                    .addOnFailureListener(
                            new OnFailureListener() {
                                @Override
                                public void onFailure(@NonNull Exception e) {
                                    // Task failed with an exception
                                    // ...
                                }
                            });

    Kotlin+KTX

    val result = detector.detectInImage(image)
            .addOnSuccessListener { faces ->
                // Task completed successfully
                // ...
            }
            .addOnFailureListener { e ->
                // Task failed with an exception
                // ...
            }

3. Uzyskiwanie informacji o wykrytych twarzy

Jeśli operacja rozpoznawania twarzy zakończy się powodzeniem, lista FirebaseVisionFace obiektów zostanie przekazanych do powodzenia słuchacz. Każdy obiekt FirebaseVisionFace reprezentuje twarz, która została wykryta zdjęcia. W przypadku każdej płaszczyzny można uzyskać współrzędne ograniczające dla każdej płaszczyzny oraz wszelkie inne informacje, na które skonfigurowano wykrywanie twarzy znaleźć. Przykład:

Java

for (FirebaseVisionFace face : faces) {
    Rect bounds = face.getBoundingBox();
    float rotY = face.getHeadEulerAngleY();  // Head is rotated to the right rotY degrees
    float rotZ = face.getHeadEulerAngleZ();  // Head is tilted sideways rotZ degrees

    // If landmark detection was enabled (mouth, ears, eyes, cheeks, and
    // nose available):
    FirebaseVisionFaceLandmark leftEar = face.getLandmark(FirebaseVisionFaceLandmark.LEFT_EAR);
    if (leftEar != null) {
        FirebaseVisionPoint leftEarPos = leftEar.getPosition();
    }

    // If contour detection was enabled:
    List<FirebaseVisionPoint> leftEyeContour =
            face.getContour(FirebaseVisionFaceContour.LEFT_EYE).getPoints();
    List<FirebaseVisionPoint> upperLipBottomContour =
            face.getContour(FirebaseVisionFaceContour.UPPER_LIP_BOTTOM).getPoints();

    // If classification was enabled:
    if (face.getSmilingProbability() != FirebaseVisionFace.UNCOMPUTED_PROBABILITY) {
        float smileProb = face.getSmilingProbability();
    }
    if (face.getRightEyeOpenProbability() != FirebaseVisionFace.UNCOMPUTED_PROBABILITY) {
        float rightEyeOpenProb = face.getRightEyeOpenProbability();
    }

    // If face tracking was enabled:
    if (face.getTrackingId() != FirebaseVisionFace.INVALID_ID) {
        int id = face.getTrackingId();
    }
}

Kotlin+KTX

for (face in faces) {
    val bounds = face.boundingBox
    val rotY = face.headEulerAngleY // Head is rotated to the right rotY degrees
    val rotZ = face.headEulerAngleZ // Head is tilted sideways rotZ degrees

    // If landmark detection was enabled (mouth, ears, eyes, cheeks, and
    // nose available):
    val leftEar = face.getLandmark(FirebaseVisionFaceLandmark.LEFT_EAR)
    leftEar?.let {
        val leftEarPos = leftEar.position
    }

    // If contour detection was enabled:
    val leftEyeContour = face.getContour(FirebaseVisionFaceContour.LEFT_EYE).points
    val upperLipBottomContour = face.getContour(FirebaseVisionFaceContour.UPPER_LIP_BOTTOM).points

    // If classification was enabled:
    if (face.smilingProbability != FirebaseVisionFace.UNCOMPUTED_PROBABILITY) {
        val smileProb = face.smilingProbability
    }
    if (face.rightEyeOpenProbability != FirebaseVisionFace.UNCOMPUTED_PROBABILITY) {
        val rightEyeOpenProb = face.rightEyeOpenProbability
    }

    // If face tracking was enabled:
    if (face.trackingId != FirebaseVisionFace.INVALID_ID) {
        val id = face.trackingId
    }
}

Przykład konturu twarzy

Gdy włączysz wykrywanie konturu twarzy, zobaczysz listę punktów za wszystkie wykryte cechy twarzy. Te punkty odpowiadają kształtowi funkcji. Zobacz twarz Omówienie pojęć związanych z wykrywaniem, aby uzyskać szczegółowe informacje o konturach reprezentowanych.

Na poniższym obrazie przedstawiono mapowanie tych punktów na twarz (kliknij obraz do powiększenia):

Wykrywanie twarzy w czasie rzeczywistym

Jeśli chcesz używać wykrywania twarzy w aplikacjach działających w czasie rzeczywistym, postępuj zgodnie z tymi instrukcjami wytycznych dotyczących uzyskiwania najlepszej liczby klatek na sekundę:

  • Skonfiguruj wykrywacz twarzy, aby używał jednej wykrywanie kontur lub klasyfikacja twarzy i wykrywanie punktów orientacyjnych, ale nie oba te rodzaje naraz:

    Wykrywanie konturów
    Wykrywanie punktów orientacyjnych
    Klasyfikacja
    Wykrywanie i klasyfikacja punktów orientacyjnych
    Wykrywanie konturów i wykrywanie punktów orientacyjnych
    Wykrywanie i klasyfikacja kontur
    Wykrywanie konturów, wykrywanie punktów orientacyjnych i klasyfikacja

  • Włącz tryb FAST (domyślnie włączony).

  • Rozważ robienie zdjęć w niższej rozdzielczości. Pamiętaj jednak, wymagania dotyczące wymiarów obrazów w tym interfejsie API.

  • Ogranicz wywołania do detektora. Jeśli nowa klatka wideo dostępnych, gdy detektor jest uruchomiony, upuść ramkę.
  • Jeśli używasz danych wyjściowych detektora do nakładania grafiki na obrazu wejściowego, najpierw pobierz wynik z ML Kit, a następnie wyrenderuj obraz i nakładanie nakładek w jednym kroku. W ten sposób renderowanie na powierzchni tylko raz na każdą ramkę wejściową.
  • Jeśli korzystasz z interfejsu API Camera2, rób zdjęcia w Format: ImageFormat.YUV_420_888.

    Jeśli używasz starszej wersji interfejsu Camera API, rób zdjęcia w Format: ImageFormat.NV21.