Etiquetar imágenes con un modelo entrenado en AutoML en Android

Después de entrenar tu propio modelo con AutoML Vision Edge , puedes usarlo en tu aplicación para etiquetar imágenes.

Antes de que empieces

  1. Si aún no lo has hecho, agrega Firebase a tu proyecto de Android .
  2. Agregue las dependencias de las bibliotecas de Android ML Kit al archivo Gradle de su módulo (nivel de aplicación) (generalmente app/build.gradle ):
    apply plugin: 'com.android.application'
    apply plugin: 'com.google.gms.google-services'
    
    dependencies {
      // ...
    
      implementation 'com.google.firebase:firebase-ml-vision:24.0.3'
      implementation 'com.google.firebase:firebase-ml-vision-automl:18.0.5'
    }
    

1. Cargue el modelo

ML Kit ejecuta sus modelos generados por AutoML en el dispositivo. Sin embargo, puedes configurar ML Kit para cargar tu modelo de forma remota desde Firebase, desde el almacenamiento local o ambos.

Al alojar el modelo en Firebase, puedes actualizarlo sin lanzar una nueva versión de la aplicación, y puedes usar Remote Config y A/B Testing para servir dinámicamente diferentes modelos a diferentes conjuntos de usuarios.

Si elige proporcionar el modelo únicamente alojándolo en Firebase y no incluirlo con su aplicación, puede reducir el tamaño de descarga inicial de su aplicación. Sin embargo, tenga en cuenta que si el modelo no está incluido con su aplicación, cualquier funcionalidad relacionada con el modelo no estará disponible hasta que su aplicación descargue el modelo por primera vez.

Al combinar tu modelo con tu aplicación, puedes asegurarte de que las funciones de aprendizaje automático de tu aplicación sigan funcionando cuando el modelo alojado en Firebase no esté disponible.

Configurar una fuente de modelo alojada en Firebase

Para usar el modelo alojado de forma remota, cree un objeto FirebaseAutoMLRemoteModel y especifique el nombre que le asignó al modelo cuando lo publicó:

Java

// Specify the name you assigned in the Firebase console.
FirebaseAutoMLRemoteModel remoteModel =
    new FirebaseAutoMLRemoteModel.Builder("your_remote_model").build();

Kotlin+KTX

// Specify the name you assigned in the Firebase console.
val remoteModel = FirebaseAutoMLRemoteModel.Builder("your_remote_model").build()

Luego, inicie la tarea de descarga del modelo, especificando las condiciones bajo las cuales desea permitir la descarga. Si el modelo no está en el dispositivo, o si hay una versión más reciente del modelo disponible, la tarea descargará el modelo de forma asincrónica desde Firebase:

Java

FirebaseModelDownloadConditions conditions = new FirebaseModelDownloadConditions.Builder()
        .requireWifi()
        .build();
FirebaseModelManager.getInstance().download(remoteModel, conditions)
        .addOnCompleteListener(new OnCompleteListener<Void>() {
            @Override
            public void onComplete(@NonNull Task<Void> task) {
                // Success.
            }
        });

Kotlin+KTX

val conditions = FirebaseModelDownloadConditions.Builder()
    .requireWifi()
    .build()
FirebaseModelManager.getInstance().download(remoteModel, conditions)
    .addOnCompleteListener {
        // Success.
    }

Muchas aplicaciones inician la tarea de descarga en su código de inicialización, pero puede hacerlo en cualquier momento antes de necesitar usar el modelo.

Configurar una fuente de modelo local

Para agrupar el modelo con su aplicación:

  1. Extraiga el modelo y sus metadatos del archivo zip que descargó de Firebase console. Le recomendamos que utilice los archivos tal como los descargó, sin modificaciones (incluidos los nombres de los archivos).
  2. Incluya su modelo y sus archivos de metadatos en el paquete de su aplicación:

    1. Si no tiene una carpeta de activos en su proyecto, cree una haciendo clic derecho en la app/ carpeta y luego haciendo clic en Nuevo > Carpeta > Carpeta de activos .
    2. Cree una subcarpeta en la carpeta de activos para contener los archivos del modelo.
    3. Copie los archivos model.tflite , dict.txt y manifest.json a la subcarpeta (los tres archivos deben estar en la misma carpeta).
  3. Agregue lo siguiente al archivo build.gradle de su aplicación para asegurarse de que Gradle no comprima el archivo del modelo al crear la aplicación:
    android {
        // ...
        aaptOptions {
            noCompress "tflite"
        }
    }
    
    El archivo del modelo se incluirá en el paquete de la aplicación y estará disponible para ML Kit como un recurso sin formato.
  4. Crea un objeto FirebaseAutoMLLocalModel y especifica la ruta al archivo de manifiesto del modelo:

    Java

    FirebaseAutoMLLocalModel localModel = new FirebaseAutoMLLocalModel.Builder()
            .setAssetFilePath("manifest.json")
            .build();
    

    Kotlin+KTX

    val localModel = FirebaseAutoMLLocalModel.Builder()
            .setAssetFilePath("manifest.json")
            .build()
    

Crea un etiquetador de imágenes a partir de tu modelo.

Después de configurar las fuentes de tu modelo, crea un objeto FirebaseVisionImageLabeler a partir de una de ellas.

Si solo tiene un modelo empaquetado localmente, simplemente cree un etiquetador desde su objeto FirebaseAutoMLLocalModel y configure el umbral de puntuación de confianza que desea solicitar (consulte Evaluar su modelo ):

Java

FirebaseVisionImageLabeler labeler;
try {
    FirebaseVisionOnDeviceAutoMLImageLabelerOptions options =
            new FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder(localModel)
                    .setConfidenceThreshold(0.0f)  // Evaluate your model in the Firebase console
                                                   // to determine an appropriate value.
                    .build();
    labeler = FirebaseVision.getInstance().getOnDeviceAutoMLImageLabeler(options);
} catch (FirebaseMLException e) {
    // ...
}

Kotlin+KTX

val options = FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder(localModel)
    .setConfidenceThreshold(0)  // Evaluate your model in the Firebase console
                                // to determine an appropriate value.
    .build()
val labeler = FirebaseVision.getInstance().getOnDeviceAutoMLImageLabeler(options)

Si tiene un modelo alojado de forma remota, deberá comprobar que se haya descargado antes de ejecutarlo. Puede verificar el estado de la tarea de descarga del modelo utilizando el método isModelDownloaded() del administrador de modelos.

Aunque solo tiene que confirmar esto antes de ejecutar el etiquetador, si tiene un modelo alojado de forma remota y un modelo empaquetado localmente, podría tener sentido realizar esta verificación al crear una instancia del etiquetador de imágenes: cree un etiquetador a partir del modelo remoto si se ha descargado y, en caso contrario, del modelo local.

Java

FirebaseModelManager.getInstance().isModelDownloaded(remoteModel)
        .addOnSuccessListener(new OnSuccessListener<Boolean>() {
            @Override
            public void onSuccess(Boolean isDownloaded) {
                FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder optionsBuilder;
                if (isDownloaded) {
                    optionsBuilder = new FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder(remoteModel);
                } else {
                    optionsBuilder = new FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder(localModel);
                }
                FirebaseVisionOnDeviceAutoMLImageLabelerOptions options = optionsBuilder
                        .setConfidenceThreshold(0.0f)  // Evaluate your model in the Firebase console
                                                       // to determine an appropriate threshold.
                        .build();

                FirebaseVisionImageLabeler labeler;
                try {
                    labeler = FirebaseVision.getInstance().getOnDeviceAutoMLImageLabeler(options);
                } catch (FirebaseMLException e) {
                    // Error.
                }
            }
        });

Kotlin+KTX

FirebaseModelManager.getInstance().isModelDownloaded(remoteModel)
    .addOnSuccessListener { isDownloaded -> 
    val optionsBuilder =
        if (isDownloaded) {
            FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder(remoteModel)
        } else {
            FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder(localModel)
        }
    // Evaluate your model in the Firebase console to determine an appropriate threshold.
    val options = optionsBuilder.setConfidenceThreshold(0.0f).build()
    val labeler = FirebaseVision.getInstance().getOnDeviceAutoMLImageLabeler(options)
}

Si solo tiene un modelo alojado de forma remota, debe desactivar la funcionalidad relacionada con el modelo (por ejemplo, atenuar u ocultar parte de su interfaz de usuario) hasta que confirme que el modelo se ha descargado. Puedes hacerlo adjuntando un oyente al método download() del administrador de modelos:

Java

FirebaseModelManager.getInstance().download(remoteModel, conditions)
        .addOnSuccessListener(new OnSuccessListener<Void>() {
            @Override
            public void onSuccess(Void v) {
              // Download complete. Depending on your app, you could enable
              // the ML feature, or switch from the local model to the remote
              // model, etc.
            }
        });

Kotlin+KTX

FirebaseModelManager.getInstance().download(remoteModel, conditions)
    .addOnCompleteListener {
        // Download complete. Depending on your app, you could enable the ML
        // feature, or switch from the local model to the remote model, etc.
    }

2. Prepare la imagen de entrada

Luego, para cada imagen que desee etiquetar, cree un objeto FirebaseVisionImage usando una de las opciones descritas en esta sección y páselo a una instancia de FirebaseVisionImageLabeler (que se describe en la siguiente sección).

Puedes crear un objeto FirebaseVisionImage a partir de un objeto media.Image , un archivo en el dispositivo, una matriz de bytes o un objeto Bitmap :

  • Para crear un objeto FirebaseVisionImage a partir de un objeto media.Image , como al capturar una imagen desde la cámara de un dispositivo, pase el objeto media.Image y la rotación de la imagen a FirebaseVisionImage.fromMediaImage() .

    Si usa la biblioteca CameraX , las clases OnImageCapturedListener e ImageAnalysis.Analyzer calculan el valor de rotación por usted, por lo que solo necesita convertir la rotación a una de las constantes ROTATION_ del kit ML antes de llamar FirebaseVisionImage.fromMediaImage() :

    Java

    private class YourAnalyzer implements ImageAnalysis.Analyzer {
    
        private int degreesToFirebaseRotation(int degrees) {
            switch (degrees) {
                case 0:
                    return FirebaseVisionImageMetadata.ROTATION_0;
                case 90:
                    return FirebaseVisionImageMetadata.ROTATION_90;
                case 180:
                    return FirebaseVisionImageMetadata.ROTATION_180;
                case 270:
                    return FirebaseVisionImageMetadata.ROTATION_270;
                default:
                    throw new IllegalArgumentException(
                            "Rotation must be 0, 90, 180, or 270.");
            }
        }
    
        @Override
        public void analyze(ImageProxy imageProxy, int degrees) {
            if (imageProxy == null || imageProxy.getImage() == null) {
                return;
            }
            Image mediaImage = imageProxy.getImage();
            int rotation = degreesToFirebaseRotation(degrees);
            FirebaseVisionImage image =
                    FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
    

    Kotlin+KTX

    private class YourImageAnalyzer : ImageAnalysis.Analyzer {
        private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) {
            0 -> FirebaseVisionImageMetadata.ROTATION_0
            90 -> FirebaseVisionImageMetadata.ROTATION_90
            180 -> FirebaseVisionImageMetadata.ROTATION_180
            270 -> FirebaseVisionImageMetadata.ROTATION_270
            else -> throw Exception("Rotation must be 0, 90, 180, or 270.")
        }
    
        override fun analyze(imageProxy: ImageProxy?, degrees: Int) {
            val mediaImage = imageProxy?.image
            val imageRotation = degreesToFirebaseRotation(degrees)
            if (mediaImage != null) {
                val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation)
                // Pass image to an ML Kit Vision API
                // ...
            }
        }
    }
    

    Si no utiliza una biblioteca de cámaras que le proporcione la rotación de la imagen, puede calcularla a partir de la rotación del dispositivo y la orientación del sensor de la cámara en el dispositivo:

    Java

    private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
    static {
        ORIENTATIONS.append(Surface.ROTATION_0, 90);
        ORIENTATIONS.append(Surface.ROTATION_90, 0);
        ORIENTATIONS.append(Surface.ROTATION_180, 270);
        ORIENTATIONS.append(Surface.ROTATION_270, 180);
    }
    
    /**
     * Get the angle by which an image must be rotated given the device's current
     * orientation.
     */
    @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
    private int getRotationCompensation(String cameraId, Activity activity, Context context)
            throws CameraAccessException {
        // Get the device's current rotation relative to its "native" orientation.
        // Then, from the ORIENTATIONS table, look up the angle the image must be
        // rotated to compensate for the device's rotation.
        int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
        int rotationCompensation = ORIENTATIONS.get(deviceRotation);
    
        // On most devices, the sensor orientation is 90 degrees, but for some
        // devices it is 270 degrees. For devices with a sensor orientation of
        // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
        CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE);
        int sensorOrientation = cameraManager
                .getCameraCharacteristics(cameraId)
                .get(CameraCharacteristics.SENSOR_ORIENTATION);
        rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360;
    
        // Return the corresponding FirebaseVisionImageMetadata rotation value.
        int result;
        switch (rotationCompensation) {
            case 0:
                result = FirebaseVisionImageMetadata.ROTATION_0;
                break;
            case 90:
                result = FirebaseVisionImageMetadata.ROTATION_90;
                break;
            case 180:
                result = FirebaseVisionImageMetadata.ROTATION_180;
                break;
            case 270:
                result = FirebaseVisionImageMetadata.ROTATION_270;
                break;
            default:
                result = FirebaseVisionImageMetadata.ROTATION_0;
                Log.e(TAG, "Bad rotation value: " + rotationCompensation);
        }
        return result;
    }

    Kotlin+KTX

    private val ORIENTATIONS = SparseIntArray()
    
    init {
        ORIENTATIONS.append(Surface.ROTATION_0, 90)
        ORIENTATIONS.append(Surface.ROTATION_90, 0)
        ORIENTATIONS.append(Surface.ROTATION_180, 270)
        ORIENTATIONS.append(Surface.ROTATION_270, 180)
    }
    /**
     * Get the angle by which an image must be rotated given the device's current
     * orientation.
     */
    @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
    @Throws(CameraAccessException::class)
    private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int {
        // Get the device's current rotation relative to its "native" orientation.
        // Then, from the ORIENTATIONS table, look up the angle the image must be
        // rotated to compensate for the device's rotation.
        val deviceRotation = activity.windowManager.defaultDisplay.rotation
        var rotationCompensation = ORIENTATIONS.get(deviceRotation)
    
        // On most devices, the sensor orientation is 90 degrees, but for some
        // devices it is 270 degrees. For devices with a sensor orientation of
        // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
        val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager
        val sensorOrientation = cameraManager
                .getCameraCharacteristics(cameraId)
                .get(CameraCharacteristics.SENSOR_ORIENTATION)!!
        rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360
    
        // Return the corresponding FirebaseVisionImageMetadata rotation value.
        val result: Int
        when (rotationCompensation) {
            0 -> result = FirebaseVisionImageMetadata.ROTATION_0
            90 -> result = FirebaseVisionImageMetadata.ROTATION_90
            180 -> result = FirebaseVisionImageMetadata.ROTATION_180
            270 -> result = FirebaseVisionImageMetadata.ROTATION_270
            else -> {
                result = FirebaseVisionImageMetadata.ROTATION_0
                Log.e(TAG, "Bad rotation value: $rotationCompensation")
            }
        }
        return result
    }

    Luego, pasa el objeto media.Image y el valor de rotación a FirebaseVisionImage.fromMediaImage() :

    Java

    FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);

    Kotlin+KTX

    val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
  • Para crear un objeto FirebaseVisionImage a partir de un URI de archivo, pase el contexto de la aplicación y el URI del archivo a FirebaseVisionImage.fromFilePath() . Esto es útil cuando usas un intent ACTION_GET_CONTENT para pedirle al usuario que seleccione una imagen de su aplicación de galería.

    Java

    FirebaseVisionImage image;
    try {
        image = FirebaseVisionImage.fromFilePath(context, uri);
    } catch (IOException e) {
        e.printStackTrace();
    }

    Kotlin+KTX

    val image: FirebaseVisionImage
    try {
        image = FirebaseVisionImage.fromFilePath(context, uri)
    } catch (e: IOException) {
        e.printStackTrace()
    }
  • Para crear un objeto FirebaseVisionImage a partir de un ByteBuffer o una matriz de bytes, primero calcule la rotación de la imagen como se describe anteriormente para la entrada media.Image .

    Luego, crea un objeto FirebaseVisionImageMetadata que contenga la altura, el ancho, el formato de codificación de color y la rotación de la imagen:

    Java

    FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder()
            .setWidth(480)   // 480x360 is typically sufficient for
            .setHeight(360)  // image recognition
            .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
            .setRotation(rotation)
            .build();

    Kotlin+KTX

    val metadata = FirebaseVisionImageMetadata.Builder()
            .setWidth(480) // 480x360 is typically sufficient for
            .setHeight(360) // image recognition
            .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
            .setRotation(rotation)
            .build()

    Utilice el búfer o matriz y el objeto de metadatos para crear un objeto FirebaseVisionImage :

    Java

    FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata);
    // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);

    Kotlin+KTX

    val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata)
    // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
  • Para crear un objeto FirebaseVisionImage a partir de un objeto Bitmap :

    Java

    FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);

    Kotlin+KTX

    val image = FirebaseVisionImage.fromBitmap(bitmap)
    La imagen representada por el objeto Bitmap debe estar en posición vertical, sin necesidad de rotación adicional.

3. Ejecute el etiquetador de imágenes.

Para etiquetar objetos en una imagen, pase el objeto FirebaseVisionImage al método processImage() de FirebaseVisionImageLabeler .

Java

labeler.processImage(image)
        .addOnSuccessListener(new OnSuccessListener<List<FirebaseVisionImageLabel>>() {
            @Override
            public void onSuccess(List<FirebaseVisionImageLabel> labels) {
                // Task completed successfully
                // ...
            }
        })
        .addOnFailureListener(new OnFailureListener() {
            @Override
            public void onFailure(@NonNull Exception e) {
                // Task failed with an exception
                // ...
            }
        });

Kotlin+KTX

labeler.processImage(image)
        .addOnSuccessListener { labels ->
            // Task completed successfully
            // ...
        }
        .addOnFailureListener { e ->
            // Task failed with an exception
            // ...
        }

Si el etiquetado de imágenes se realiza correctamente, se pasará una matriz de objetos FirebaseVisionImageLabel al oyente exitoso. De cada objeto, puede obtener información sobre una característica reconocida en la imagen.

Por ejemplo:

Java

for (FirebaseVisionImageLabel label: labels) {
    String text = label.getText();
    float confidence = label.getConfidence();
}

Kotlin+KTX

for (label in labels) {
    val text = label.text
    val confidence = label.confidence
}

Consejos para mejorar el rendimiento en tiempo real

  • Llamadas del acelerador al detector. Si hay un nuevo cuadro de video disponible mientras el detector está en ejecución, suelte el cuadro.
  • Si está utilizando la salida del detector para superponer gráficos en la imagen de entrada, primero obtenga el resultado del ML Kit, luego renderice la imagen y superpóngala en un solo paso. Al hacerlo, renderiza en la superficie de visualización solo una vez por cada cuadro de entrada.
  • Si utiliza la API Camera2, capture imágenes en formato ImageFormat.YUV_420_888 .

    Si utiliza la API de cámara anterior, capture imágenes en formato ImageFormat.NV21 .