ML Kit を使用すると、端末モデルまたはクラウドモデルを使って、画像内で認識されたオブジェクトにラベルを付けることができます。それぞれの手法の利点については、概要をご覧ください。
始める前に
- まだ Firebase を Android プロジェクトに追加していない場合は追加します。
- ML Kit Android ライブラリの依存関係をモジュール(アプリレベル)の Gradle ファイル(通常は
app/build.gradle
)に追加します。apply plugin: 'com.android.application' apply plugin: 'com.google.gms.google-services' dependencies { // ... implementation 'com.google.firebase:firebase-ml-vision:24.0.3' implementation 'com.google.firebase:firebase-ml-vision-image-label-model:20.0.1' }
-
省略可能、ただし推奨: デバイス用 API を使用する場合は、アプリが Play ストアからインストールされたら自動で ML モデルをデバイスにダウンロードするようにアプリを構成します。
この構成を行うには、アプリの
AndroidManifest.xml
ファイルに次の宣言を追加します。 インストール時点でのモデルのダウンロードを有効にしない場合は、デバイス上の検出器の初回実行時にモデルがダウンロードされます。ダウンロードが完了する前にリクエストしても結果は生成されません。<application ...> ... <meta-data android:name="com.google.firebase.ml.vision.DEPENDENCIES" android:value="label" /> <!-- To use multiple models: android:value="label,model2,model3" --> </application>
-
Cloud ベース モデルを使用する場合に、まだプロジェクトで Cloud ベースの API を有効にしていないときは、ここで有効にします。
- Firebase コンソールの ML Kit API ページを開きます。
-
まだプロジェクトを Blaze 料金プランにアップグレードしていない場合は、[アップグレード] をクリックしてアップグレードします(プロジェクトをアップグレードするよう求められるのは、プロジェクトが Blaze プランでない場合のみです)。
Blaze レベルのプロジェクトだけが Cloud ベースの API を使用できます。
- Cloud ベースの API がまだ有効になっていない場合は、[Cloud ベースの API を有効化] をクリックします。
デバイスモデルのみを使用する場合は、この手順を省略できます。
これで、デバイスモデルまたはクラウドベース モデルを使用して画像にラベルを付ける準備ができました。
1. 入力画像を準備する
画像からFirebaseVisionImage
オブジェクトを作成します。Bitmap
を使用するか、Camera2 API(JPEG フォーマットの media.Image
)を使用すると、画像ラベラーの処理が速くなります。可能であれば、このフォーマットの使用をおすすめします。
-
FirebaseVisionImage
オブジェクトをmedia.Image
オブジェクトから作成するには(デバイスのカメラから画像をキャプチャする場合など)、media.Image
オブジェクトと画像の回転をFirebaseVisionImage.fromMediaImage()
に渡します。CameraX ライブラリを使用する場合は、
OnImageCapturedListener
クラスとImageAnalysis.Analyzer
クラスによって回転値が計算されるので、FirebaseVisionImage.fromMediaImage()
を呼び出す前に、その回転を ML Kit のROTATION_
定数のいずれかに変換するだけで済みます。Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { private int degreesToFirebaseRotation(int degrees) { switch (degrees) { case 0: return FirebaseVisionImageMetadata.ROTATION_0; case 90: return FirebaseVisionImageMetadata.ROTATION_90; case 180: return FirebaseVisionImageMetadata.ROTATION_180; case 270: return FirebaseVisionImageMetadata.ROTATION_270; default: throw new IllegalArgumentException( "Rotation must be 0, 90, 180, or 270."); } } @Override public void analyze(ImageProxy imageProxy, int degrees) { if (imageProxy == null || imageProxy.getImage() == null) { return; } Image mediaImage = imageProxy.getImage(); int rotation = degreesToFirebaseRotation(degrees); FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation); // Pass image to an ML Kit Vision API // ... } }
Kotlin
private class YourImageAnalyzer : ImageAnalysis.Analyzer { private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) { 0 -> FirebaseVisionImageMetadata.ROTATION_0 90 -> FirebaseVisionImageMetadata.ROTATION_90 180 -> FirebaseVisionImageMetadata.ROTATION_180 270 -> FirebaseVisionImageMetadata.ROTATION_270 else -> throw Exception("Rotation must be 0, 90, 180, or 270.") } override fun analyze(imageProxy: ImageProxy?, degrees: Int) { val mediaImage = imageProxy?.image val imageRotation = degreesToFirebaseRotation(degrees) if (mediaImage != null) { val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation) // Pass image to an ML Kit Vision API // ... } } }
画像の回転を取得するカメラ ライブラリを使用しない場合は、デバイスの回転とデバイス内のカメラセンサーの向きから計算できます。
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 90); ORIENTATIONS.append(Surface.ROTATION_90, 0); ORIENTATIONS.append(Surface.ROTATION_180, 270); ORIENTATIONS.append(Surface.ROTATION_270, 180); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, Context context) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360; // Return the corresponding FirebaseVisionImageMetadata rotation value. int result; switch (rotationCompensation) { case 0: result = FirebaseVisionImageMetadata.ROTATION_0; break; case 90: result = FirebaseVisionImageMetadata.ROTATION_90; break; case 180: result = FirebaseVisionImageMetadata.ROTATION_180; break; case 270: result = FirebaseVisionImageMetadata.ROTATION_270; break; default: result = FirebaseVisionImageMetadata.ROTATION_0; Log.e(TAG, "Bad rotation value: " + rotationCompensation); } return result; }
Kotlin
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 90) ORIENTATIONS.append(Surface.ROTATION_90, 0) ORIENTATIONS.append(Surface.ROTATION_180, 270) ORIENTATIONS.append(Surface.ROTATION_270, 180) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360 // Return the corresponding FirebaseVisionImageMetadata rotation value. val result: Int when (rotationCompensation) { 0 -> result = FirebaseVisionImageMetadata.ROTATION_0 90 -> result = FirebaseVisionImageMetadata.ROTATION_90 180 -> result = FirebaseVisionImageMetadata.ROTATION_180 270 -> result = FirebaseVisionImageMetadata.ROTATION_270 else -> { result = FirebaseVisionImageMetadata.ROTATION_0 Log.e(TAG, "Bad rotation value: $rotationCompensation") } } return result }
次に、
media.Image
オブジェクトと回転値をFirebaseVisionImage.fromMediaImage()
に渡します。Java
FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
Kotlin
val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
FirebaseVisionImage
オブジェクトをファイルの URI から作成するには、アプリ コンテキストとファイルの URI をFirebaseVisionImage.fromFilePath()
に渡します。これは、ACTION_GET_CONTENT
インテントを使用して、ギャラリー アプリから画像を選択するようにユーザーに促すときに便利です。Java
FirebaseVisionImage image; try { image = FirebaseVisionImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
Kotlin
val image: FirebaseVisionImage try { image = FirebaseVisionImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
FirebaseVisionImage
オブジェクトをByteBuffer
またはバイト配列から作成するには、media.Image
入力について上記のように、まず画像の回転を計算します。次に、画像の高さ、幅、カラー エンコード形式、回転を含む
FirebaseVisionImageMetadata
オブジェクトを作成します。Java
FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build();
Kotlin
val metadata = FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build()
メタデータ オブジェクトと、バッファまたは配列を使用して、
FirebaseVisionImage
オブジェクトを作成します。Java
FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata); // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
Kotlin
val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata) // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
FirebaseVisionImage
オブジェクトをBitmap
オブジェクトから作成するコードは、以下のとおりです。Java
FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
Kotlin
val image = FirebaseVisionImage.fromBitmap(bitmap)
Bitmap
オブジェクトによって表される画像は、これ以上回転させる必要がないように、正しい向きになっている必要があります。
2. 画像ラベラーを構成して実行する
画像内のオブジェクトにラベルを付けるには、FirebaseVisionImage
オブジェクトを FirebaseVisionImageLabeler
の processImage
メソッドに渡します。
まず、
FirebaseVisionImageLabeler
のインスタンスを取得します。デバイスの画像ラベラーを使用する場合:
Java
FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance() .getOnDeviceImageLabeler(); // Or, to set the minimum confidence required: // FirebaseVisionOnDeviceImageLabelerOptions options = // new FirebaseVisionOnDeviceImageLabelerOptions.Builder() // .setConfidenceThreshold(0.7f) // .build(); // FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance() // .getOnDeviceImageLabeler(options);
Kotlin
val labeler = FirebaseVision.getInstance().getOnDeviceImageLabeler() // Or, to set the minimum confidence required: // val options = FirebaseVisionOnDeviceImageLabelerOptions.Builder() // .setConfidenceThreshold(0.7f) // .build() // val labeler = FirebaseVision.getInstance().getOnDeviceImageLabeler(options)
クラウドの画像ラベラーを使用する場合:
Java
FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance() .getCloudImageLabeler(); // Or, to set the minimum confidence required: // FirebaseVisionCloudImageLabelerOptions options = // new FirebaseVisionCloudImageLabelerOptions.Builder() // .setConfidenceThreshold(0.7f) // .build(); // FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance() // .getCloudImageLabeler(options);
Kotlin
val labeler = FirebaseVision.getInstance().getCloudImageLabeler() // Or, to set the minimum confidence required: // val options = FirebaseVisionCloudImageLabelerOptions.Builder() // .setConfidenceThreshold(0.7f) // .build() // val labeler = FirebaseVision.getInstance().getCloudImageLabeler(options)
次に、画像を
processImage()
メソッドに渡します。Java
labeler.processImage(image) .addOnSuccessListener(new OnSuccessListener<List<FirebaseVisionImageLabel>>() { @Override public void onSuccess(List<FirebaseVisionImageLabel> labels) { // Task completed successfully // ... } }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
Kotlin
labeler.processImage(image) .addOnSuccessListener { labels -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
3. ラベル付きオブジェクトに関する情報を取得する
画像のラベル付けオペレーションが成功すると、FirebaseVisionImageLabel
オブジェクトのリストが成功リスナーに渡されます。各 FirebaseVisionImageLabel
オブジェクトは画像内でラベル付けされたものを表します。ラベルごとに、ラベルのテキストの説明、ラベルのナレッジグラフ エンティティの ID(使用できる場合)、マッチの信頼スコアを取得できます。次に例を示します。
Java
for (FirebaseVisionImageLabel label: labels) {
String text = label.getText();
String entityId = label.getEntityId();
float confidence = label.getConfidence();
}
Kotlin
for (label in labels) {
val text = label.text
val entityId = label.entityId
val confidence = label.confidence
}
リアルタイムのパフォーマンスを改善するためのヒント
リアルタイムのアプリケーションでラベルイメージを使用する場合は、適切なフレームレートを得るために次のガイドラインに従ってください。
- 画像ラベラーの呼び出しのスロットル調整を行います。画像ラベラーの実行中に新しい動画フレームが使用可能になった場合は、そのフレームをドロップします。
- 画像ラベラーの出力を使用して入力画像の上にグラフィックスをオーバーレイする場合は、まず ML Kit から検出結果を取得し、画像とオーバーレイを 1 つのステップでレンダリングします。これにより、ディスプレイ サーフェスへのレンダリングは入力フレームごとに 1 回で済みます。
-
Camera2 API を使用する場合は、
ImageFormat.YUV_420_888
形式で画像をキャプチャします。古い Camera API を使用する場合は、
ImageFormat.NV21
形式で画像をキャプチャします。
次のステップ
- Cloud APIs を使用するアプリを本番環境にデプロイする前に、不正な API アクセスを防いでその影響を軽減するため、いくつかの追加手順が必要になります。