تصنيف الصور باستخدام مجموعة أدوات تعلُّم الآلة على Android

يمكنك استخدام ML Kit لتصنيف الأجسام التي يتم التعرّف عليها في الصورة، وذلك باستخدام إما نموذج على الجهاز أو نموذج على السحابة الإلكترونية. اطّلِع على نظرة عامة للتعرّف على مزايا كل نهج.

قبل البدء

  1. أضِف Firebase إلى مشروع Android، في حال لم يسبق لك إجراء ذلك.
  2. أضِف التبعيات لمكتبات ML Kit لنظام التشغيل Android إلى ملف Gradle (على مستوى التطبيق) للوحدة (عادةً app/build.gradle):
    apply plugin: 'com.android.application'
    apply plugin: 'com.google.gms.google-services'
    
    dependencies {
      // ...
    
      implementation 'com.google.firebase:firebase-ml-vision:24.0.3'
      implementation 'com.google.firebase:firebase-ml-vision-image-label-model:20.0.1'
    }
  3. إجراء اختياري ولكن يُنصح به: في حال استخدام واجهة برمجة التطبيقات على الجهاز، عليك ضبط إعدادات تطبيقك لتنزيل نموذج الذكاء الاصطناعي تلقائيًا على الجهاز بعد تثبيت تطبيقك من "متجر Play".

    لإجراء ذلك، أضِف البيان التالي إلى ملف AndroidManifest.xml في تطبيقك:

    <application ...>
      ...
      <meta-data
          android:name="com.google.firebase.ml.vision.DEPENDENCIES"
          android:value="label" />
      <!-- To use multiple models: android:value="label,model2,model3" -->
    </application>
    في حال عدم تفعيل عمليات تنزيل النماذج في وقت التثبيت، سيتم تنزيل النموذج في المرة الأولى التي يتم فيها تشغيل أداة الكشف على الجهاز. ولن تؤدي الطلبات التي تقدّمها قبل اكتمال عملية التنزيل إلى أي نتائج.
  4. إذا كنت تريد استخدام النموذج المستنِد إلى السحابة الإلكترونية ولم يسبق لك تفعيل واجهات برمجة التطبيقات المستنِدة إلى السحابة الإلكترونية لمشروعك، يمكنك إجراء ذلك الآن:

    1. افتح صفحة واجهات برمجة التطبيقات في ML Kit في وحدة تحكّم Firebase.
    2. إذا لم تكن قد أجريت ترقية لمشروعك إلى خطة أسعار Blaze، انقر على ترقية لإجراء ذلك. (لن يُطلب منك إجراء الترقية إلا إذا كان مشروعك غير مُدرَج في خطة Blaze).

      يمكن للمشاريع على مستوى Blaze فقط استخدام واجهات برمجة التطبيقات المستندة إلى Cloud.

    3. إذا لم تكن واجهات برمجة التطبيقات المستندة إلى السحابة الإلكترونية مفعّلة، انقر على تفعيل واجهات برمجة التطبيقات المستندة إلى السحابة الإلكترونية.

    إذا كنت تريد استخدام النموذج على الجهاز فقط، يمكنك تخطّي هذه الخطوة.

يمكنك الآن تصنيف الصور باستخدام نموذج على الجهاز أو نموذج مستند إلى السحابة الإلكترونية.

1. تجهيز صورة الإدخال

أنشئ عنصرًا FirebaseVisionImage من صورتك. يتم تشغيل أداة وضع العلامات على الصور بأسرع شكل عند استخدام Bitmap أو media.Image بتنسيق JPEG في حال استخدام camera2 API، ويُنصح باستخدامهما كلما أمكن.

  • لإنشاء عنصر FirebaseVisionImage من media.Image، مثلاً عند التقاط صورة من كاميرا الجهاز، عليك تمرير عنصر media.Image ودرجة دوران الصورة إلى FirebaseVisionImage.fromMediaImage().

    إذا كنت تستخدِم مكتبة CameraX، تحتسِب فئتَا OnImageCapturedListener و ImageAnalysis.Analyzer قيمة التدوير بالنيابة عنك، لذا ما عليك سوى تحويل التدوير إلى أحد ثوابت ROTATION_ في ML Kit قبل استدعاء FirebaseVisionImage.fromMediaImage():

    Java

    private class YourAnalyzer implements ImageAnalysis.Analyzer {
    
        private int degreesToFirebaseRotation(int degrees) {
            switch (degrees) {
                case 0:
                    return FirebaseVisionImageMetadata.ROTATION_0;
                case 90:
                    return FirebaseVisionImageMetadata.ROTATION_90;
                case 180:
                    return FirebaseVisionImageMetadata.ROTATION_180;
                case 270:
                    return FirebaseVisionImageMetadata.ROTATION_270;
                default:
                    throw new IllegalArgumentException(
                            "Rotation must be 0, 90, 180, or 270.");
            }
        }
    
        @Override
        public void analyze(ImageProxy imageProxy, int degrees) {
            if (imageProxy == null || imageProxy.getImage() == null) {
                return;
            }
            Image mediaImage = imageProxy.getImage();
            int rotation = degreesToFirebaseRotation(degrees);
            FirebaseVisionImage image =
                    FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
            // Pass image to an ML Kit Vision API
            // ...
        }
    }

    Kotlin

    private class YourImageAnalyzer : ImageAnalysis.Analyzer {
        private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) {
            0 -> FirebaseVisionImageMetadata.ROTATION_0
            90 -> FirebaseVisionImageMetadata.ROTATION_90
            180 -> FirebaseVisionImageMetadata.ROTATION_180
            270 -> FirebaseVisionImageMetadata.ROTATION_270
            else -> throw Exception("Rotation must be 0, 90, 180, or 270.")
        }
    
        override fun analyze(imageProxy: ImageProxy?, degrees: Int) {
            val mediaImage = imageProxy?.image
            val imageRotation = degreesToFirebaseRotation(degrees)
            if (mediaImage != null) {
                val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation)
                // Pass image to an ML Kit Vision API
                // ...
            }
        }
    }

    إذا كنت لا تستخدم مكتبة كاميرا تمنحك معلومات عن دوران الصورة، يمكنك احتسابها من خلال دوران الجهاز واتجاه كاميرا الاستشعار في الجهاز:

    Java

    private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
    static {
        ORIENTATIONS.append(Surface.ROTATION_0, 90);
        ORIENTATIONS.append(Surface.ROTATION_90, 0);
        ORIENTATIONS.append(Surface.ROTATION_180, 270);
        ORIENTATIONS.append(Surface.ROTATION_270, 180);
    }
    
    /**
     * Get the angle by which an image must be rotated given the device's current
     * orientation.
     */
    @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
    private int getRotationCompensation(String cameraId, Activity activity, Context context)
            throws CameraAccessException {
        // Get the device's current rotation relative to its "native" orientation.
        // Then, from the ORIENTATIONS table, look up the angle the image must be
        // rotated to compensate for the device's rotation.
        int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
        int rotationCompensation = ORIENTATIONS.get(deviceRotation);
    
        // On most devices, the sensor orientation is 90 degrees, but for some
        // devices it is 270 degrees. For devices with a sensor orientation of
        // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
        CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE);
        int sensorOrientation = cameraManager
                .getCameraCharacteristics(cameraId)
                .get(CameraCharacteristics.SENSOR_ORIENTATION);
        rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360;
    
        // Return the corresponding FirebaseVisionImageMetadata rotation value.
        int result;
        switch (rotationCompensation) {
            case 0:
                result = FirebaseVisionImageMetadata.ROTATION_0;
                break;
            case 90:
                result = FirebaseVisionImageMetadata.ROTATION_90;
                break;
            case 180:
                result = FirebaseVisionImageMetadata.ROTATION_180;
                break;
            case 270:
                result = FirebaseVisionImageMetadata.ROTATION_270;
                break;
            default:
                result = FirebaseVisionImageMetadata.ROTATION_0;
                Log.e(TAG, "Bad rotation value: " + rotationCompensation);
        }
        return result;
    }

    Kotlin

    private val ORIENTATIONS = SparseIntArray()
    
    init {
        ORIENTATIONS.append(Surface.ROTATION_0, 90)
        ORIENTATIONS.append(Surface.ROTATION_90, 0)
        ORIENTATIONS.append(Surface.ROTATION_180, 270)
        ORIENTATIONS.append(Surface.ROTATION_270, 180)
    }
    /**
     * Get the angle by which an image must be rotated given the device's current
     * orientation.
     */
    @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
    @Throws(CameraAccessException::class)
    private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int {
        // Get the device's current rotation relative to its "native" orientation.
        // Then, from the ORIENTATIONS table, look up the angle the image must be
        // rotated to compensate for the device's rotation.
        val deviceRotation = activity.windowManager.defaultDisplay.rotation
        var rotationCompensation = ORIENTATIONS.get(deviceRotation)
    
        // On most devices, the sensor orientation is 90 degrees, but for some
        // devices it is 270 degrees. For devices with a sensor orientation of
        // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
        val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager
        val sensorOrientation = cameraManager
                .getCameraCharacteristics(cameraId)
                .get(CameraCharacteristics.SENSOR_ORIENTATION)!!
        rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360
    
        // Return the corresponding FirebaseVisionImageMetadata rotation value.
        val result: Int
        when (rotationCompensation) {
            0 -> result = FirebaseVisionImageMetadata.ROTATION_0
            90 -> result = FirebaseVisionImageMetadata.ROTATION_90
            180 -> result = FirebaseVisionImageMetadata.ROTATION_180
            270 -> result = FirebaseVisionImageMetadata.ROTATION_270
            else -> {
                result = FirebaseVisionImageMetadata.ROTATION_0
                Log.e(TAG, "Bad rotation value: $rotationCompensation")
            }
        }
        return result
    }

    بعد ذلك، مرِّر العنصر media.Image وقيمة الدوران إلى FirebaseVisionImage.fromMediaImage():

    Java

    FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);

    Kotlin

    val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
  • لإنشاء عنصر FirebaseVisionImage من معرّف موارد منتظم لملف، عليك تمرير سياق التطبيق ومعرّف الموارد المنتظم للملف إلى FirebaseVisionImage.fromFilePath(). يكون ذلك مفيدًا عند استخدام نية ACTION_GET_CONTENT لطلب تحديد صورة من تطبيق معرض الصور.

    Java

    FirebaseVisionImage image;
    try {
        image = FirebaseVisionImage.fromFilePath(context, uri);
    } catch (IOException e) {
        e.printStackTrace();
    }

    Kotlin

    val image: FirebaseVisionImage
    try {
        image = FirebaseVisionImage.fromFilePath(context, uri)
    } catch (e: IOException) {
        e.printStackTrace()
    }
  • لإنشاء عنصر FirebaseVisionImage من ByteBuffer أو صفيف بايت، يجب أولاً احتساب ملفه الشخصي للدوران كما هو موضّح أعلاه لإدخال media.Image.

    بعد ذلك، أنشئ عنصرًا من النوع FirebaseVisionImageMetadata يحتوي على ارتفاع الصورة وعرضها وتنسيق ترميز اللون وتدويرها:

    Java

    FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder()
            .setWidth(480)   // 480x360 is typically sufficient for
            .setHeight(360)  // image recognition
            .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
            .setRotation(rotation)
            .build();

    Kotlin

    val metadata = FirebaseVisionImageMetadata.Builder()
            .setWidth(480) // 480x360 is typically sufficient for
            .setHeight(360) // image recognition
            .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
            .setRotation(rotation)
            .build()

    استخدِم المخزن المؤقت أو الصفيف وعنصر البيانات الوصفية لإنشاء عنصر FirebaseVisionImage:

    Java

    FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata);
    // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);

    Kotlin

    val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata)
    // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
  • لإنشاء عنصر FirebaseVisionImage من عنصر Bitmap:

    Java

    FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);

    Kotlin

    val image = FirebaseVisionImage.fromBitmap(bitmap)
    يجب أن تكون الصورة التي يمثّلها عنصر Bitmap منتصبة، بدون الحاجة إلى إجراء أيّ دوران إضافي.

2- ضبط أداة تصنيف الصور وتشغيلها

لتصنيف الأجسام في صورة، مرِّر عنصر FirebaseVisionImage إلى processImage في FirebaseVisionImageLabeler.

  1. أولاً، احصل على مثيل من FirebaseVisionImageLabeler.

    إذا أردت استخدام أداة وضع تصنيفات للصور على الجهاز:

    Java

    FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance()
        .getOnDeviceImageLabeler();
    
    // Or, to set the minimum confidence required:
    // FirebaseVisionOnDeviceImageLabelerOptions options =
    //     new FirebaseVisionOnDeviceImageLabelerOptions.Builder()
    //         .setConfidenceThreshold(0.7f)
    //         .build();
    // FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance()
    //     .getOnDeviceImageLabeler(options);
    

    Kotlin

    val labeler = FirebaseVision.getInstance().getOnDeviceImageLabeler()
    
    // Or, to set the minimum confidence required:
    // val options = FirebaseVisionOnDeviceImageLabelerOptions.Builder()
    //     .setConfidenceThreshold(0.7f)
    //     .build()
    // val labeler = FirebaseVision.getInstance().getOnDeviceImageLabeler(options)
    

    إذا كنت تريد استخدام أداة وضع العلامات على الصور في السحابة الإلكترونية:

    Java

    FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance()
        .getCloudImageLabeler();
    
    // Or, to set the minimum confidence required:
    // FirebaseVisionCloudImageLabelerOptions options =
    //     new FirebaseVisionCloudImageLabelerOptions.Builder()
    //         .setConfidenceThreshold(0.7f)
    //         .build();
    // FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance()
    //     .getCloudImageLabeler(options);
    

    Kotlin

    val labeler = FirebaseVision.getInstance().getCloudImageLabeler()
    
    // Or, to set the minimum confidence required:
    // val options = FirebaseVisionCloudImageLabelerOptions.Builder()
    //     .setConfidenceThreshold(0.7f)
    //     .build()
    // val labeler = FirebaseVision.getInstance().getCloudImageLabeler(options)
    

  2. بعد ذلك، نقْل الصورة إلى طريقة processImage():

    Java

    labeler.processImage(image)
        .addOnSuccessListener(new OnSuccessListener<List<FirebaseVisionImageLabel>>() {
          @Override
          public void onSuccess(List<FirebaseVisionImageLabel> labels) {
            // Task completed successfully
            // ...
          }
        })
        .addOnFailureListener(new OnFailureListener() {
          @Override
          public void onFailure(@NonNull Exception e) {
            // Task failed with an exception
            // ...
          }
        });
    

    Kotlin

    labeler.processImage(image)
        .addOnSuccessListener { labels ->
          // Task completed successfully
          // ...
        }
        .addOnFailureListener { e ->
          // Task failed with an exception
          // ...
        }
    

3- الحصول على معلومات عن الأجسام المصنَّفة

في حال نجاح عملية تصنيف الصور، سيتم تمرير قائمة بعناصر FirebaseVisionImageLabel إلى معالج النجاح. يمثّل كل عنصر FirebaseVisionImageLabel شيئًا تم تصنيفه في الصورة. لكل تصنيف، يمكنك الحصول على وصف نص التصنيف، ومعرّف عنصر "الشبكة المعرفية" (إذا كان متاحًا)، ودرجة الثقة في المطابقة. على سبيل المثال:

Java

for (FirebaseVisionImageLabel label: labels) {
  String text = label.getText();
  String entityId = label.getEntityId();
  float confidence = label.getConfidence();
}

Kotlin

for (label in labels) {
  val text = label.text
  val entityId = label.entityId
  val confidence = label.confidence
}

نصائح لتحسين الأداء في الوقت الفعلي

إذا كنت تريد تصنيف الصور في تطبيق يعمل في الوقت الفعلي، اتّبِع هذه الإرشادات لتحقيق أفضل معدّلات عرض اللقطات:

  • الحد من عدد طلبات تصنيف الصور إذا أصبح إطار فيديو جديد متاحًا أثناء تشغيل أداة وضع التصنيفات على الصور، يمكنك إسقاط الإطار.
  • إذا كنت تستخدِم نتيجة أداة وضع التصنيفات على الصور لوضع الرسومات على صورة الإدخال، يمكنك أولاً الحصول على النتيجة من ML Kit، ثم عرض الصورة ووضع الرسومات عليها في خطوة واحدة. وبذلك، يتم عرض المحتوى على سطح العرض مرّة واحدة فقط لكل إطار إدخال.
  • إذا كنت تستخدم واجهة برمجة التطبيقات Camera2 API، يمكنك التقاط الصور بتنسيق ImageFormat.YUV_420_888.

    إذا كنت تستخدم الإصدار القديم من Camera API، يمكنك التقاط الصور بتنسيق ImageFormat.NV21.

الخطوات التالية