Bilder mit ML Kit auf Android-Geräten mit Labels versehen

Mit ML Kit können Sie Objekte, die in einem Bild erkannt werden, entweder mit einem On-Device-Modell oder einem Cloud-Modell taggen. In der Übersicht finden Sie Informationen zu den Vorteilen der einzelnen Ansätze.

Hinweis

  1. Fügen Sie Ihrem Android-Projekt Firebase hinzu, falls noch nicht geschehen.
  2. Fügen Sie der Gradle-Datei des Moduls (auf Anwendungsebene, in der Regel app/build.gradle) die Abhängigkeiten für die ML Kit-Android-Bibliotheken hinzu:
    apply plugin: 'com.android.application'
    apply plugin: 'com.google.gms.google-services'
    
    dependencies {
      // ...
    
      implementation 'com.google.firebase:firebase-ml-vision:24.0.3'
      implementation 'com.google.firebase:firebase-ml-vision-image-label-model:20.0.1'
    }
  3. Optional, aber empfohlen: Wenn Sie die On-Device API verwenden, konfigurieren Sie Ihre App so, dass das ML-Modell automatisch auf das Gerät heruntergeladen wird, nachdem Ihre App aus dem Play Store installiert wurde.

    Fügen Sie dazu der Datei AndroidManifest.xml Ihrer App die folgende Erklärung hinzu:

    <application ...>
      ...
      <meta-data
          android:name="com.google.firebase.ml.vision.DEPENDENCIES"
          android:value="label" />
      <!-- To use multiple models: android:value="label,model2,model3" -->
    </application>
    Wenn Sie den Download von Modellen bei der Installation nicht aktivieren, wird das Modell beim ersten Ausführen des On-Device-Erkners heruntergeladen. Anfragen, die Sie vor Abschluss des Downloads stellen, führen zu keinen Ergebnissen.
  4. Wenn Sie das cloudbasierte Modell verwenden möchten und die cloudbasierten APIs für Ihr Projekt noch nicht aktiviert haben, gehen Sie so vor:

    1. Öffnen Sie in der Firebase-Konsole die Seite ML Kit APIs.
    2. Wenn Sie Ihr Projekt noch nicht auf einen Blaze-Tarif umgestellt haben, klicken Sie auf Upgrade. Sie werden nur dann zum Umstellen aufgefordert, wenn Ihr Projekt nicht den Blaze-Tarif hat.

      Cloud-basierte APIs können nur in Projekten auf Blaze-Ebene verwendet werden.

    3. Wenn cloudbasierte APIs noch nicht aktiviert sind, klicken Sie auf Cloudbasierte APIs aktivieren.

    Wenn Sie nur das Modell auf dem Gerät verwenden möchten, können Sie diesen Schritt überspringen.

Jetzt können Sie Bilder entweder mit einem On-Device-Modell oder einem cloudbasierten Modell labeln.

1. Eingabebild vorbereiten

Erstellen Sie aus Ihrem Bild ein FirebaseVisionImage-Objekt. Der Bildlabeler funktioniert am schnellsten, wenn Sie ein Bitmap oder, wenn Sie die camera2 API verwenden, ein im JPEG-Format vorliegendes media.Image verwenden. Wir empfehlen, nach Möglichkeit diese Formate zu verwenden.

  • Wenn Sie ein FirebaseVisionImage-Objekt aus einem media.Image-Objekt erstellen möchten, z. B. wenn Sie ein Bild mit der Kamera eines Geräts aufnehmen, übergeben Sie das media.Image-Objekt und die Drehung des Bilds an FirebaseVisionImage.fromMediaImage().

    Wenn Sie die CameraX-Bibliothek verwenden, wird der Drehwert von den Klassen OnImageCapturedListener und ImageAnalysis.Analyzer für Sie berechnet. Sie müssen ihn also nur in eine der ROTATION_-Konstanten von ML Kit umwandeln, bevor Sie FirebaseVisionImage.fromMediaImage() aufrufen:

    Java

    private class YourAnalyzer implements ImageAnalysis.Analyzer {
    
        private int degreesToFirebaseRotation(int degrees) {
            switch (degrees) {
                case 0:
                    return FirebaseVisionImageMetadata.ROTATION_0;
                case 90:
                    return FirebaseVisionImageMetadata.ROTATION_90;
                case 180:
                    return FirebaseVisionImageMetadata.ROTATION_180;
                case 270:
                    return FirebaseVisionImageMetadata.ROTATION_270;
                default:
                    throw new IllegalArgumentException(
                            "Rotation must be 0, 90, 180, or 270.");
            }
        }
    
        @Override
        public void analyze(ImageProxy imageProxy, int degrees) {
            if (imageProxy == null || imageProxy.getImage() == null) {
                return;
            }
            Image mediaImage = imageProxy.getImage();
            int rotation = degreesToFirebaseRotation(degrees);
            FirebaseVisionImage image =
                    FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
            // Pass image to an ML Kit Vision API
            // ...
        }
    }

    Kotlin

    private class YourImageAnalyzer : ImageAnalysis.Analyzer {
        private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) {
            0 -> FirebaseVisionImageMetadata.ROTATION_0
            90 -> FirebaseVisionImageMetadata.ROTATION_90
            180 -> FirebaseVisionImageMetadata.ROTATION_180
            270 -> FirebaseVisionImageMetadata.ROTATION_270
            else -> throw Exception("Rotation must be 0, 90, 180, or 270.")
        }
    
        override fun analyze(imageProxy: ImageProxy?, degrees: Int) {
            val mediaImage = imageProxy?.image
            val imageRotation = degreesToFirebaseRotation(degrees)
            if (mediaImage != null) {
                val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation)
                // Pass image to an ML Kit Vision API
                // ...
            }
        }
    }

    Wenn Sie keine Kamerabibliothek verwenden, die die Drehung des Bildes angibt, können Sie sie anhand der Drehung des Geräts und der Ausrichtung des Kamerasensors im Gerät berechnen:

    Java

    private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
    static {
        ORIENTATIONS.append(Surface.ROTATION_0, 90);
        ORIENTATIONS.append(Surface.ROTATION_90, 0);
        ORIENTATIONS.append(Surface.ROTATION_180, 270);
        ORIENTATIONS.append(Surface.ROTATION_270, 180);
    }
    
    /**
     * Get the angle by which an image must be rotated given the device's current
     * orientation.
     */
    @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
    private int getRotationCompensation(String cameraId, Activity activity, Context context)
            throws CameraAccessException {
        // Get the device's current rotation relative to its "native" orientation.
        // Then, from the ORIENTATIONS table, look up the angle the image must be
        // rotated to compensate for the device's rotation.
        int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
        int rotationCompensation = ORIENTATIONS.get(deviceRotation);
    
        // On most devices, the sensor orientation is 90 degrees, but for some
        // devices it is 270 degrees. For devices with a sensor orientation of
        // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
        CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE);
        int sensorOrientation = cameraManager
                .getCameraCharacteristics(cameraId)
                .get(CameraCharacteristics.SENSOR_ORIENTATION);
        rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360;
    
        // Return the corresponding FirebaseVisionImageMetadata rotation value.
        int result;
        switch (rotationCompensation) {
            case 0:
                result = FirebaseVisionImageMetadata.ROTATION_0;
                break;
            case 90:
                result = FirebaseVisionImageMetadata.ROTATION_90;
                break;
            case 180:
                result = FirebaseVisionImageMetadata.ROTATION_180;
                break;
            case 270:
                result = FirebaseVisionImageMetadata.ROTATION_270;
                break;
            default:
                result = FirebaseVisionImageMetadata.ROTATION_0;
                Log.e(TAG, "Bad rotation value: " + rotationCompensation);
        }
        return result;
    }

    Kotlin

    private val ORIENTATIONS = SparseIntArray()
    
    init {
        ORIENTATIONS.append(Surface.ROTATION_0, 90)
        ORIENTATIONS.append(Surface.ROTATION_90, 0)
        ORIENTATIONS.append(Surface.ROTATION_180, 270)
        ORIENTATIONS.append(Surface.ROTATION_270, 180)
    }
    /**
     * Get the angle by which an image must be rotated given the device's current
     * orientation.
     */
    @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
    @Throws(CameraAccessException::class)
    private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int {
        // Get the device's current rotation relative to its "native" orientation.
        // Then, from the ORIENTATIONS table, look up the angle the image must be
        // rotated to compensate for the device's rotation.
        val deviceRotation = activity.windowManager.defaultDisplay.rotation
        var rotationCompensation = ORIENTATIONS.get(deviceRotation)
    
        // On most devices, the sensor orientation is 90 degrees, but for some
        // devices it is 270 degrees. For devices with a sensor orientation of
        // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
        val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager
        val sensorOrientation = cameraManager
                .getCameraCharacteristics(cameraId)
                .get(CameraCharacteristics.SENSOR_ORIENTATION)!!
        rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360
    
        // Return the corresponding FirebaseVisionImageMetadata rotation value.
        val result: Int
        when (rotationCompensation) {
            0 -> result = FirebaseVisionImageMetadata.ROTATION_0
            90 -> result = FirebaseVisionImageMetadata.ROTATION_90
            180 -> result = FirebaseVisionImageMetadata.ROTATION_180
            270 -> result = FirebaseVisionImageMetadata.ROTATION_270
            else -> {
                result = FirebaseVisionImageMetadata.ROTATION_0
                Log.e(TAG, "Bad rotation value: $rotationCompensation")
            }
        }
        return result
    }

    Übergeben Sie dann das media.Image-Objekt und den Drehwert an FirebaseVisionImage.fromMediaImage():

    Java

    FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);

    Kotlin

    val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
  • Wenn Sie ein FirebaseVisionImage-Objekt aus einem Datei-URI erstellen möchten, übergeben Sie den App-Kontext und den Datei-URI an FirebaseVisionImage.fromFilePath(). Das ist nützlich, wenn Sie mit einer ACTION_GET_CONTENT-Intent den Nutzer auffordern, ein Bild aus seiner Galerie-App auszuwählen.

    Java

    FirebaseVisionImage image;
    try {
        image = FirebaseVisionImage.fromFilePath(context, uri);
    } catch (IOException e) {
        e.printStackTrace();
    }

    Kotlin

    val image: FirebaseVisionImage
    try {
        image = FirebaseVisionImage.fromFilePath(context, uri)
    } catch (e: IOException) {
        e.printStackTrace()
    }
  • Wenn Sie ein FirebaseVisionImage-Objekt aus einem ByteBuffer oder einem Byte-Array erstellen möchten, berechnen Sie zuerst die Bilddrehung wie oben für die media.Image-Eingabe beschrieben.

    Erstellen Sie dann ein FirebaseVisionImageMetadata-Objekt, das die Höhe, Breite, Farbcodierung und Drehung des Bildes enthält:

    Java

    FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder()
            .setWidth(480)   // 480x360 is typically sufficient for
            .setHeight(360)  // image recognition
            .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
            .setRotation(rotation)
            .build();

    Kotlin

    val metadata = FirebaseVisionImageMetadata.Builder()
            .setWidth(480) // 480x360 is typically sufficient for
            .setHeight(360) // image recognition
            .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
            .setRotation(rotation)
            .build()

    Verwende den Puffer oder das Array und das Metadatenobjekt, um ein FirebaseVisionImage-Objekt zu erstellen:

    Java

    FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata);
    // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);

    Kotlin

    val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata)
    // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
  • So erstellen Sie ein FirebaseVisionImage-Objekt aus einem Bitmap-Objekt:

    Java

    FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);

    Kotlin

    val image = FirebaseVisionImage.fromBitmap(bitmap)
    Das vom Bitmap-Objekt dargestellte Bild muss aufrecht sein und darf nicht zusätzlich gedreht werden.

2. Bildlabeler konfigurieren und ausführen

Wenn Sie Objekte in einem Bild mit Labels versehen möchten, übergeben Sie das FirebaseVisionImage-Objekt an die processImage-Methode des FirebaseVisionImageLabeler-Objekts.

  1. Rufen Sie zuerst eine Instanz von FirebaseVisionImageLabeler ab.

    So verwenden Sie die On-Device-Bilderkennung:

    Java

    FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance()
        .getOnDeviceImageLabeler();
    
    // Or, to set the minimum confidence required:
    // FirebaseVisionOnDeviceImageLabelerOptions options =
    //     new FirebaseVisionOnDeviceImageLabelerOptions.Builder()
    //         .setConfidenceThreshold(0.7f)
    //         .build();
    // FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance()
    //     .getOnDeviceImageLabeler(options);
    

    Kotlin

    val labeler = FirebaseVision.getInstance().getOnDeviceImageLabeler()
    
    // Or, to set the minimum confidence required:
    // val options = FirebaseVisionOnDeviceImageLabelerOptions.Builder()
    //     .setConfidenceThreshold(0.7f)
    //     .build()
    // val labeler = FirebaseVision.getInstance().getOnDeviceImageLabeler(options)
    

    So verwenden Sie den Cloud-Bildlabeler:

    Java

    FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance()
        .getCloudImageLabeler();
    
    // Or, to set the minimum confidence required:
    // FirebaseVisionCloudImageLabelerOptions options =
    //     new FirebaseVisionCloudImageLabelerOptions.Builder()
    //         .setConfidenceThreshold(0.7f)
    //         .build();
    // FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance()
    //     .getCloudImageLabeler(options);
    

    Kotlin

    val labeler = FirebaseVision.getInstance().getCloudImageLabeler()
    
    // Or, to set the minimum confidence required:
    // val options = FirebaseVisionCloudImageLabelerOptions.Builder()
    //     .setConfidenceThreshold(0.7f)
    //     .build()
    // val labeler = FirebaseVision.getInstance().getCloudImageLabeler(options)
    

  2. Übergeben Sie dann das Bild an die processImage()-Methode:

    Java

    labeler.processImage(image)
        .addOnSuccessListener(new OnSuccessListener<List<FirebaseVisionImageLabel>>() {
          @Override
          public void onSuccess(List<FirebaseVisionImageLabel> labels) {
            // Task completed successfully
            // ...
          }
        })
        .addOnFailureListener(new OnFailureListener() {
          @Override
          public void onFailure(@NonNull Exception e) {
            // Task failed with an exception
            // ...
          }
        });
    

    Kotlin

    labeler.processImage(image)
        .addOnSuccessListener { labels ->
          // Task completed successfully
          // ...
        }
        .addOnFailureListener { e ->
          // Task failed with an exception
          // ...
        }
    

3. Informationen zu gekennzeichneten Objekten abrufen

Wenn der Vorgang zum Beschriften von Bildern erfolgreich war, wird dem Erfolgs-Listener eine Liste von FirebaseVisionImageLabel-Objekten übergeben. Jedes FirebaseVisionImageLabel-Objekt steht für etwas, das im Bild gekennzeichnet wurde. Für jedes Label können Sie die Textbeschreibung des Labels, die Knowledge Graph-Entitäts-ID (falls verfügbar) und den Konfidenzwert der Übereinstimmung abrufen. Beispiel:

Java

for (FirebaseVisionImageLabel label: labels) {
  String text = label.getText();
  String entityId = label.getEntityId();
  float confidence = label.getConfidence();
}

Kotlin

for (label in labels) {
  val text = label.text
  val entityId = label.entityId
  val confidence = label.confidence
}

Tipps zur Verbesserung der Echtzeitleistung

Wenn Sie Bilder in einer Echtzeitanwendung taggen möchten, beachten Sie die folgenden Richtlinien, um die beste Framerate zu erzielen:

  • Aufrufe an den Bildbeschrifter drosseln Wenn während der Ausführung des Bildestikkers ein neuer Videoframe verfügbar wird, legen Sie ihn ab.
  • Wenn Sie die Ausgabe des Bildes-Labelers verwenden, um Grafiken auf das Eingabebild zu legen, rufen Sie zuerst das Ergebnis aus ML Kit ab und rendern Sie dann das Bild und das Overlay in einem einzigen Schritt. So wird für jeden Eingabeframe nur einmal auf die Displayoberfläche gerendert.
  • Wenn Sie die Camera2 API verwenden, sollten Sie Bilder im ImageFormat.YUV_420_888-Format aufnehmen.

    Wenn Sie die ältere Camera API verwenden, nehmen Sie Bilder im ImageFormat.NV21-Format auf.

Nächste Schritte