Mit ML Kit können Sie Barcodes erkennen und decodieren.
Hinweis
- Falls noch nicht geschehen, Fügen Sie Firebase zu Ihrem Android-Projekt hinzu.
- Abhängigkeiten für die ML Kit-Android-Bibliotheken zu Ihrem Modul hinzufügen
Gradle-Datei auf App-Ebene (in der Regel
app/build.gradle
):apply plugin: 'com.android.application' apply plugin: 'com.google.gms.google-services' dependencies { // ... implementation 'com.google.firebase:firebase-ml-vision:24.0.3' implementation 'com.google.firebase:firebase-ml-vision-barcode-model:16.0.1' }
Richtlinien für Eingabebilder
-
Damit das ML Kit Barcodes genau lesen kann, müssen die Eingabebilder Folgendes enthalten: Barcodes, die durch ausreichende Pixeldaten dargestellt werden.
Die spezifischen Pixeldatenanforderungen hängen sowohl vom Typ Barcode und die darin codierte Datenmenge (da die meisten Barcodes eine Nutzlast mit variabler Länge unterstützen). Im Allgemeinen sollte die kleinste sollte die Einheit des Barcodes mindestens 2 Pixel breit sein (und für 2-dimensionale Codes, 2 Pixel hoch).
EAN-13-Barcodes bestehen beispielsweise aus Balken und Leerräumen, die 1, 2, 3 oder 4 Einheiten breit sind. Ein EAN-13-Barcodebild sollte also idealerweise Balken und Leerräume mit einer Breite von mindestens 2, 4, 6 und 8 Pixeln haben. Da eine EAN-13- Barcode insgesamt 95 Einheiten breit ist, sollte der Barcode mindestens 190 Einheiten haben. Pixel breit.
Kompaktere Formate wie PDF417 erfordern größere Pixelabmessungen für ML Kit zuverlässig lesen. Beispielsweise kann ein PDF417-Code bis zu 34 Breite „Wörter“ (17 Einheiten) in einer einzelnen Zeile, was im Idealfall mindestens 1156 Pixel breit.
-
Ein schlechter Bildfokus kann die Scangenauigkeit beeinträchtigen. Wenn Sie keine akzeptable Ergebnisse, versuchen Sie, das Bild erneut aufzunehmen.
-
Für typische Anwendungen empfiehlt es sich, eine höhere Bildauflösung (z. B. 1280 x 720 oder 1920 x 1080), bei dem Barcodes auch bei größerer Entfernung zur Kamera erkennbar sein.
Bei Anwendungen, bei denen die Latenz entscheidend ist, können Sie die Leistung jedoch verbessern, indem Sie Bilder mit niedrigerer Auflösung aufnehmen. Der Barcode muss dabei jedoch den Großteil des Eingabebilds ausmachen. Weitere Informationen finden Sie unter Tipps zur Verbesserung der Echtzeitleistung.
1. Barcode-Erkennung konfigurieren
Wenn Sie wissen, welche Barcodeformate Sie lesen möchten, können Sie die Geschwindigkeit verbessern des Barcode-Detektors konfigurieren, indem Sie ihn so konfigurieren, dass nur diese Formate erkannt werden.Um beispielsweise nur Aztec-Code und QR-Codes zu erkennen, erstellen Sie
FirebaseVisionBarcodeDetectorOptions
-Objekts wie im folgenden Beispiel:
Java
FirebaseVisionBarcodeDetectorOptions options = new FirebaseVisionBarcodeDetectorOptions.Builder() .setBarcodeFormats( FirebaseVisionBarcode.FORMAT_QR_CODE, FirebaseVisionBarcode.FORMAT_AZTEC) .build();
Kotlin+KTX
val options = FirebaseVisionBarcodeDetectorOptions.Builder() .setBarcodeFormats( FirebaseVisionBarcode.FORMAT_QR_CODE, FirebaseVisionBarcode.FORMAT_AZTEC) .build()
Die folgenden Formate werden unterstützt:
- Code 128 (
FORMAT_CODE_128
) - Code 39 (
FORMAT_CODE_39
) - Code 93 (
FORMAT_CODE_93
) - Codabar (
FORMAT_CODABAR
) - EAN-13 (
FORMAT_EAN_13
) - EAN-8 (
FORMAT_EAN_8
) - ITF (
FORMAT_ITF
) - UPC-A (
FORMAT_UPC_A
) - UPC-E (
FORMAT_UPC_E
) - QR-Code (
FORMAT_QR_CODE
) - PDF417 (
FORMAT_PDF417
) - Azteken (
FORMAT_AZTEC
) - Datenmatrix (
FORMAT_DATA_MATRIX
)
2. Barcode-Detektor ausführen
Wenn du Barcodes in einem Bild erkennen möchtest, erstelle einFirebaseVisionImage
-Objekt
aus einem Bitmap
-, media.Image
-, ByteBuffer
-, Byte-Array oder einer Datei in
auf dem Gerät. Übergeben Sie dann das FirebaseVisionImage
-Objekt an den
Die Methode detectInImage
von FirebaseVisionBarcodeDetector
.
Erstellen Sie aus Ihrem Bild ein
FirebaseVisionImage
-Objekt.-
Wenn Sie ein
FirebaseVisionImage
-Objekt aus einemmedia.Image
-Objekt erstellen möchten, z. B. wenn Sie ein Bild mit der Kamera eines Geräts aufnehmen, übergeben Sie dasmedia.Image
-Objekt und die Drehung des Bilds anFirebaseVisionImage.fromMediaImage()
.Wenn Sie die Methode CameraX-Bibliothek, den
OnImageCapturedListener
undImageAnalysis.Analyzer
-Klassen berechnen den Rotationswert Sie müssen also nur die Rotation in eine der ML Kit-ModelleROTATION_
-Konstanten vor dem AufrufFirebaseVisionImage.fromMediaImage()
:Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { private int degreesToFirebaseRotation(int degrees) { switch (degrees) { case 0: return FirebaseVisionImageMetadata.ROTATION_0; case 90: return FirebaseVisionImageMetadata.ROTATION_90; case 180: return FirebaseVisionImageMetadata.ROTATION_180; case 270: return FirebaseVisionImageMetadata.ROTATION_270; default: throw new IllegalArgumentException( "Rotation must be 0, 90, 180, or 270."); } } @Override public void analyze(ImageProxy imageProxy, int degrees) { if (imageProxy == null || imageProxy.getImage() == null) { return; } Image mediaImage = imageProxy.getImage(); int rotation = degreesToFirebaseRotation(degrees); FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation); // Pass image to an ML Kit Vision API // ... } }
Kotlin+KTX
private class YourImageAnalyzer : ImageAnalysis.Analyzer { private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) { 0 -> FirebaseVisionImageMetadata.ROTATION_0 90 -> FirebaseVisionImageMetadata.ROTATION_90 180 -> FirebaseVisionImageMetadata.ROTATION_180 270 -> FirebaseVisionImageMetadata.ROTATION_270 else -> throw Exception("Rotation must be 0, 90, 180, or 270.") } override fun analyze(imageProxy: ImageProxy?, degrees: Int) { val mediaImage = imageProxy?.image val imageRotation = degreesToFirebaseRotation(degrees) if (mediaImage != null) { val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation) // Pass image to an ML Kit Vision API // ... } } }
Wenn Sie keine Kamerabibliothek verwenden, die Ihnen die Rotation des Bildes anzeigt, den Wert aus der Gerätedrehung und der Kameraausrichtung berechnen kann. Sensor im Gerät:
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 90); ORIENTATIONS.append(Surface.ROTATION_90, 0); ORIENTATIONS.append(Surface.ROTATION_180, 270); ORIENTATIONS.append(Surface.ROTATION_270, 180); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, Context context) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360; // Return the corresponding FirebaseVisionImageMetadata rotation value. int result; switch (rotationCompensation) { case 0: result = FirebaseVisionImageMetadata.ROTATION_0; break; case 90: result = FirebaseVisionImageMetadata.ROTATION_90; break; case 180: result = FirebaseVisionImageMetadata.ROTATION_180; break; case 270: result = FirebaseVisionImageMetadata.ROTATION_270; break; default: result = FirebaseVisionImageMetadata.ROTATION_0; Log.e(TAG, "Bad rotation value: " + rotationCompensation); } return result; }
Kotlin+KTX
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 90) ORIENTATIONS.append(Surface.ROTATION_90, 0) ORIENTATIONS.append(Surface.ROTATION_180, 270) ORIENTATIONS.append(Surface.ROTATION_270, 180) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360 // Return the corresponding FirebaseVisionImageMetadata rotation value. val result: Int when (rotationCompensation) { 0 -> result = FirebaseVisionImageMetadata.ROTATION_0 90 -> result = FirebaseVisionImageMetadata.ROTATION_90 180 -> result = FirebaseVisionImageMetadata.ROTATION_180 270 -> result = FirebaseVisionImageMetadata.ROTATION_270 else -> { result = FirebaseVisionImageMetadata.ROTATION_0 Log.e(TAG, "Bad rotation value: $rotationCompensation") } } return result }
Übergeben Sie dann das
media.Image
-Objekt und den Rotationswert aufFirebaseVisionImage.fromMediaImage()
:Java
FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
Kotlin+KTX
val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
- Um ein
FirebaseVisionImage
-Objekt aus einem Datei-URI zu erstellen, übergeben Sie App-Kontext und Datei-URI zuFirebaseVisionImage.fromFilePath()
. Dies ist nützlich, wenn Sie Verwenden Sie den IntentACTION_GET_CONTENT
, um den Nutzer zur Auswahl aufzufordern ein Bild aus ihrer Galerie-App.Java
FirebaseVisionImage image; try { image = FirebaseVisionImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
Kotlin+KTX
val image: FirebaseVisionImage try { image = FirebaseVisionImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
- Um ein
FirebaseVisionImage
-Objekt aus einemByteBuffer
oder einem Byte-Array, berechnen Sie zuerst das Bild Rotation wie oben für diemedia.Image
-Eingabe beschrieben.Erstellen Sie dann ein
FirebaseVisionImageMetadata
-Objekt. die die Höhe, Breite, Farbcodierung, und Rotation:Java
FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build();
Kotlin+KTX
val metadata = FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build()
Verwenden Sie den Zwischenspeicher oder das Array und das Metadatenobjekt, um einen Objekt
FirebaseVisionImage
:Java
FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata); // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
Kotlin+KTX
val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata) // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
- So erstellen Sie ein
FirebaseVisionImage
-Objekt aus einemBitmap
-Objekt:Java
FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
Kotlin+KTX
val image = FirebaseVisionImage.fromBitmap(bitmap)
Bitmap
dargestellte Bild muss aufrecht und ohne zusätzliche Drehung aufrecht.
-
Rufen Sie eine
FirebaseVisionBarcodeDetector
-Instanz ab:Java
FirebaseVisionBarcodeDetector detector = FirebaseVision.getInstance() .getVisionBarcodeDetector(); // Or, to specify the formats to recognize: // FirebaseVisionBarcodeDetector detector = FirebaseVision.getInstance() // .getVisionBarcodeDetector(options);
Kotlin+KTX
val detector = FirebaseVision.getInstance() .visionBarcodeDetector // Or, to specify the formats to recognize: // val detector = FirebaseVision.getInstance() // .getVisionBarcodeDetector(options)
Übergeben Sie zuletzt das Bild an die Methode
detectInImage
:Java
Task<List<FirebaseVisionBarcode>> result = detector.detectInImage(image) .addOnSuccessListener(new OnSuccessListener<List<FirebaseVisionBarcode>>() { @Override public void onSuccess(List<FirebaseVisionBarcode> barcodes) { // Task completed successfully // ... } }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
Kotlin+KTX
val result = detector.detectInImage(image) .addOnSuccessListener { barcodes -> // Task completed successfully // ... } .addOnFailureListener { // Task failed with an exception // ... }
3. Informationen aus Barcodes abrufen
Wenn die Barcodeerkennung erfolgreich ist, wird eine ListeFirebaseVisionBarcode
-Objekte werden an den Erfolgs-Listener übergeben. Jedes
Das Objekt FirebaseVisionBarcode
steht für einen Barcode, der in der
Bild. Für jeden Barcode finden Sie die Begrenzungskoordinaten in der Eingabe
als auch die durch den Barcode codierten Rohdaten. Wenn der Barcode-Detektor den Typ der vom Barcode codierten Daten ermitteln konnte, können Sie auch ein Objekt mit geparsten Daten abrufen.
Beispiel:
Java
for (FirebaseVisionBarcode barcode: barcodes) { Rect bounds = barcode.getBoundingBox(); Point[] corners = barcode.getCornerPoints(); String rawValue = barcode.getRawValue(); int valueType = barcode.getValueType(); // See API reference for complete list of supported types switch (valueType) { case FirebaseVisionBarcode.TYPE_WIFI: String ssid = barcode.getWifi().getSsid(); String password = barcode.getWifi().getPassword(); int type = barcode.getWifi().getEncryptionType(); break; case FirebaseVisionBarcode.TYPE_URL: String title = barcode.getUrl().getTitle(); String url = barcode.getUrl().getUrl(); break; } }
Kotlin+KTX
for (barcode in barcodes) { val bounds = barcode.boundingBox val corners = barcode.cornerPoints val rawValue = barcode.rawValue val valueType = barcode.valueType // See API reference for complete list of supported types when (valueType) { FirebaseVisionBarcode.TYPE_WIFI -> { val ssid = barcode.wifi!!.ssid val password = barcode.wifi!!.password val type = barcode.wifi!!.encryptionType } FirebaseVisionBarcode.TYPE_URL -> { val title = barcode.url!!.title val url = barcode.url!!.url } } }
Tipps zum Verbessern der Leistung in Echtzeit
Wenn Sie Barcodes in einer Echtzeitanwendung scannen möchten, gehen Sie so vor: um optimale Framerates zu erzielen:
-
Nehmen Sie Eingaben nicht mit der nativen Auflösung der Kamera auf. Auf einigen Geräten ist das Erfassen von Eingaben mit nativer Auflösung extrem groß (10+ Megapixel), was zu einer sehr geringen Latenz führt, Genauigkeit. Fordern Sie stattdessen nur die erforderliche Größe von der Kamera an. zur Barcodeerkennung: in der Regel nicht mehr als 2 Megapixel.
Wenn die Scangeschwindigkeit wichtig ist, können Sie die Bildaufnahme weiter verringern Problembehebung. Beachten Sie jedoch die Mindestanforderungen an die Größe von Barcodes. wie oben beschrieben.
- Drosselung von Aufrufen an den Detektor. Wenn ein neuer Videoframe wenn der Detektor ausgeführt wird, lassen Sie den Frame weg.
- Wenn Sie die Ausgabe des Detektors verwenden, um Grafiken Eingabebild, rufen Sie zuerst das Ergebnis aus ML Kit ab und rendern Sie das Bild in einem Schritt übereinanderlegen. Dadurch rendern Sie auf der Anzeigeoberfläche für jeden Eingabe-Frame nur einmal.
-
Wenn Sie die Camera2 API verwenden, sollten Sie Bilder im
ImageFormat.YUV_420_888
-Format aufnehmen.Wenn Sie die ältere Camera API verwenden, nehmen Sie Bilder in
ImageFormat.NV21
-Format.