आप किसी छवि में प्रसिद्ध स्थलों को पहचानने के लिए एमएल किट का उपयोग कर सकते हैं।
शुरू करने से पहले
- यदि आपने पहले से ऐसा नहीं किया है, तो अपने Android प्रोजेक्ट में Firebase जोड़ें ।
- अपने मॉड्यूल (ऐप-स्तर) ग्रैडल फ़ाइल (आमतौर पर
app/build.gradle
) में एमएल किट एंड्रॉइड लाइब्रेरी के लिए निर्भरता जोड़ें:apply plugin: 'com.android.application' apply plugin: 'com.google.gms.google-services' dependencies { // ... implementation 'com.google.firebase:firebase-ml-vision:24.0.3' }
यदि आपने अपने प्रोजेक्ट के लिए पहले से क्लाउड-आधारित API सक्षम नहीं किया है, तो अभी करें:
- फायरबेस कंसोल का एमएल किट एपीआई पेज खोलें।
यदि आपने पहले से ही अपने प्रोजेक्ट को ब्लेज़ मूल्य निर्धारण योजना में अपग्रेड नहीं किया है, तो ऐसा करने के लिए अपग्रेड पर क्लिक करें। (आपको केवल तभी अपग्रेड करने के लिए कहा जाएगा जब आपका प्रोजेक्ट ब्लेज़ प्लान पर न हो।)
केवल ब्लेज़-स्तरीय प्रोजेक्ट ही क्लाउड-आधारित API का उपयोग कर सकते हैं।
- यदि क्लाउड-आधारित API पहले से सक्षम नहीं हैं, तो क्लाउड-आधारित API सक्षम करें क्लिक करें .
लैंडमार्क डिटेक्टर को कॉन्फ़िगर करें
डिफ़ॉल्ट रूप से, क्लाउड डिटेक्टर मॉडल के STABLE
संस्करण का उपयोग करता है और अधिकतम 10 परिणाम देता है। यदि आप इनमें से किसी भी सेटिंग को बदलना चाहते हैं, तो उन्हें FirebaseVisionCloudDetectorOptions
ऑब्जेक्ट के साथ निर्दिष्ट करें।
उदाहरण के लिए, दोनों डिफ़ॉल्ट सेटिंग्स को बदलने के लिए, निम्न उदाहरण में एक FirebaseVisionCloudDetectorOptions
ऑब्जेक्ट बनाएं:
Java
FirebaseVisionCloudDetectorOptions options = new FirebaseVisionCloudDetectorOptions.Builder() .setModelType(FirebaseVisionCloudDetectorOptions.LATEST_MODEL) .setMaxResults(15) .build();
Kotlin+KTX
val options = FirebaseVisionCloudDetectorOptions.Builder() .setModelType(FirebaseVisionCloudDetectorOptions.LATEST_MODEL) .setMaxResults(15) .build()
डिफ़ॉल्ट सेटिंग्स का उपयोग करने के लिए, आप अगले चरण में FirebaseVisionCloudDetectorOptions.DEFAULT
का उपयोग कर सकते हैं।
लैंडमार्क डिटेक्टर चलाएँ
किसी छवि में लैंडमार्क को पहचानने के लिए, किसीBitmap
, media.Image
, ByteBuffer
, बाइट सरणी, या डिवाइस पर किसी फ़ाइल से FirebaseVisionImage
ऑब्जेक्ट बनाएं। फिर, FirebaseVisionImage
ऑब्जेक्ट को FirebaseVisionCloudLandmarkDetector
के detectInImage
विधि में पास करें।अपनी छवि से एक
FirebaseVisionImage
ऑब्जेक्ट बनाएं।media.Image
ऑब्जेक्ट सेFirebaseVisionImage
ऑब्जेक्ट बनाने के लिए, जैसे कि डिवाइस के कैमरे से इमेज कैप्चर करते समय,media.Image
ऑब्जेक्ट और इमेज के रोटेशन कोFirebaseVisionImage.fromMediaImage()
पर पास करें।यदि आप कैमराएक्स लाइब्रेरी का उपयोग करते हैं, तो
OnImageCapturedListener
औरImageAnalysis.Analyzer
वर्ग आपके लिए रोटेशन मान की गणना करते हैं, इसलिए आपकोFirebaseVisionImage.fromMediaImage()
को कॉल करने से पहले रोटेशन को एमएल किट केROTATION_
स्थिरांक में से एक में बदलने की आवश्यकता है:Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { private int degreesToFirebaseRotation(int degrees) { switch (degrees) { case 0: return FirebaseVisionImageMetadata.ROTATION_0; case 90: return FirebaseVisionImageMetadata.ROTATION_90; case 180: return FirebaseVisionImageMetadata.ROTATION_180; case 270: return FirebaseVisionImageMetadata.ROTATION_270; default: throw new IllegalArgumentException( "Rotation must be 0, 90, 180, or 270."); } } @Override public void analyze(ImageProxy imageProxy, int degrees) { if (imageProxy == null || imageProxy.getImage() == null) { return; } Image mediaImage = imageProxy.getImage(); int rotation = degreesToFirebaseRotation(degrees); FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation); // Pass image to an ML Kit Vision API // ... } }
Kotlin+KTX
private class YourImageAnalyzer : ImageAnalysis.Analyzer { private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) { 0 -> FirebaseVisionImageMetadata.ROTATION_0 90 -> FirebaseVisionImageMetadata.ROTATION_90 180 -> FirebaseVisionImageMetadata.ROTATION_180 270 -> FirebaseVisionImageMetadata.ROTATION_270 else -> throw Exception("Rotation must be 0, 90, 180, or 270.") } override fun analyze(imageProxy: ImageProxy?, degrees: Int) { val mediaImage = imageProxy?.image val imageRotation = degreesToFirebaseRotation(degrees) if (mediaImage != null) { val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation) // Pass image to an ML Kit Vision API // ... } } }
यदि आप एक कैमरा लाइब्रेरी का उपयोग नहीं करते हैं जो आपको छवि का रोटेशन देता है, तो आप डिवाइस के रोटेशन और डिवाइस में कैमरा सेंसर के उन्मुखीकरण से इसकी गणना कर सकते हैं:
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 90); ORIENTATIONS.append(Surface.ROTATION_90, 0); ORIENTATIONS.append(Surface.ROTATION_180, 270); ORIENTATIONS.append(Surface.ROTATION_270, 180); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, Context context) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360; // Return the corresponding FirebaseVisionImageMetadata rotation value. int result; switch (rotationCompensation) { case 0: result = FirebaseVisionImageMetadata.ROTATION_0; break; case 90: result = FirebaseVisionImageMetadata.ROTATION_90; break; case 180: result = FirebaseVisionImageMetadata.ROTATION_180; break; case 270: result = FirebaseVisionImageMetadata.ROTATION_270; break; default: result = FirebaseVisionImageMetadata.ROTATION_0; Log.e(TAG, "Bad rotation value: " + rotationCompensation); } return result; }
Kotlin+KTX
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 90) ORIENTATIONS.append(Surface.ROTATION_90, 0) ORIENTATIONS.append(Surface.ROTATION_180, 270) ORIENTATIONS.append(Surface.ROTATION_270, 180) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360 // Return the corresponding FirebaseVisionImageMetadata rotation value. val result: Int when (rotationCompensation) { 0 -> result = FirebaseVisionImageMetadata.ROTATION_0 90 -> result = FirebaseVisionImageMetadata.ROTATION_90 180 -> result = FirebaseVisionImageMetadata.ROTATION_180 270 -> result = FirebaseVisionImageMetadata.ROTATION_270 else -> { result = FirebaseVisionImageMetadata.ROTATION_0 Log.e(TAG, "Bad rotation value: $rotationCompensation") } } return result }
फिर,
media.Image
ऑब्जेक्ट और रोटेशन मान कोFirebaseVisionImage.fromMediaImage()
पर पास करें:Java
FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
Kotlin+KTX
val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
- फ़ाइल URI से
FirebaseVisionImage
ऑब्जेक्ट बनाने के लिए, ऐप संदर्भ पास करें और URI कोFirebaseVisionImage.fromFilePath()
पर फ़ाइल करें। यह तब उपयोगी होता है जब आपACTION_GET_CONTENT
आशय का उपयोग उपयोगकर्ता को उनके गैलरी ऐप से एक छवि का चयन करने के लिए प्रेरित करने के लिए करते हैं।Java
FirebaseVisionImage image; try { image = FirebaseVisionImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
Kotlin+KTX
val image: FirebaseVisionImage try { image = FirebaseVisionImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
-
ByteBuffer
या बाइट सरणी सेFirebaseVisionImage
ऑब्जेक्ट बनाने के लिए, पहलेmedia.Image
के लिए ऊपर वर्णित छवि रोटेशन की गणना करें। छवि इनपुट।फिर, एक
FirebaseVisionImageMetadata
ऑब्जेक्ट बनाएं जिसमें छवि की ऊंचाई, चौड़ाई, रंग एन्कोडिंग प्रारूप और रोटेशन शामिल हो:Java
FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build();
Kotlin+KTX
val metadata = FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build()
FirebaseVisionImage
ऑब्जेक्ट बनाने के लिए बफ़र या सरणी और मेटाडेटा ऑब्जेक्ट का उपयोग करें:Java
FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata); // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
Kotlin+KTX
val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata) // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
-
Bitmap
ऑब्जेक्ट सेFirebaseVisionImage
ऑब्जेक्ट बनाने के लिए:Java
FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
Kotlin+KTX
val image = FirebaseVisionImage.fromBitmap(bitmap)
Bitmap
ऑब्जेक्ट द्वारा दर्शाया गया चित्र सीधा होना चाहिए, बिना किसी अतिरिक्त घुमाव की आवश्यकता के।
FirebaseVisionCloudLandmarkDetector
का एक उदाहरण प्राप्त करें:Java
FirebaseVisionCloudLandmarkDetector detector = FirebaseVision.getInstance() .getVisionCloudLandmarkDetector(); // Or, to change the default settings: // FirebaseVisionCloudLandmarkDetector detector = FirebaseVision.getInstance() // .getVisionCloudLandmarkDetector(options);
Kotlin+KTX
val detector = FirebaseVision.getInstance() .visionCloudLandmarkDetector // Or, to change the default settings: // val detector = FirebaseVision.getInstance() // .getVisionCloudLandmarkDetector(options)
अंत में, छवि को
detectInImage
विधि में पास करें:Java
Task<List<FirebaseVisionCloudLandmark>> result = detector.detectInImage(image) .addOnSuccessListener(new OnSuccessListener<List<FirebaseVisionCloudLandmark>>() { @Override public void onSuccess(List<FirebaseVisionCloudLandmark> firebaseVisionCloudLandmarks) { // Task completed successfully // ... } }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
Kotlin+KTX
val result = detector.detectInImage(image) .addOnSuccessListener { firebaseVisionCloudLandmarks -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
मान्यता प्राप्त स्थलों के बारे में जानकारी प्राप्त करें
यदि लैंडमार्क रिकग्निशन ऑपरेशन सफल होता है, तोFirebaseVisionCloudLandmark
ऑब्जेक्ट्स की एक सूची सफलता श्रोता को पास कर दी जाएगी। प्रत्येक FirebaseVisionCloudLandmark
ऑब्जेक्ट एक ऐसे लैंडमार्क का प्रतिनिधित्व करता है जिसे छवि में पहचाना गया था। प्रत्येक लैंडमार्क के लिए, आप इनपुट इमेज में इसके बाउंडिंग निर्देशांक, लैंडमार्क का नाम, इसका अक्षांश और देशांतर, इसकी नॉलेज ग्राफ़ इकाई आईडी (यदि उपलब्ध हो), और मैच का कॉन्फिडेंस स्कोर प्राप्त कर सकते हैं। उदाहरण के लिए: Java
for (FirebaseVisionCloudLandmark landmark: firebaseVisionCloudLandmarks) { Rect bounds = landmark.getBoundingBox(); String landmarkName = landmark.getLandmark(); String entityId = landmark.getEntityId(); float confidence = landmark.getConfidence(); // Multiple locations are possible, e.g., the location of the depicted // landmark and the location the picture was taken. for (FirebaseVisionLatLng loc: landmark.getLocations()) { double latitude = loc.getLatitude(); double longitude = loc.getLongitude(); } }
Kotlin+KTX
for (landmark in firebaseVisionCloudLandmarks) { val bounds = landmark.boundingBox val landmarkName = landmark.landmark val entityId = landmark.entityId val confidence = landmark.confidence // Multiple locations are possible, e.g., the location of the depicted // landmark and the location the picture was taken. for (loc in landmark.locations) { val latitude = loc.latitude val longitude = loc.longitude } }
अगले कदम
- क्लाउड एपीआई का उपयोग करने वाले ऐप के उत्पादन के लिए तैनात करने से पहले, आपको अनधिकृत एपीआई एक्सेस के प्रभाव को रोकने और कम करने के लिए कुछ अतिरिक्त कदम उठाने चाहिए।