Wahrzeichen mit ML Kit auf Android-Geräten erkennen

Mit ML Kit können Sie bekannte Sehenswürdigkeiten in einem Bild erkennen.

Hinweis

  1. Fügen Sie Ihrem Android-Projekt Firebase hinzu, falls noch nicht geschehen.
  2. Fügen Sie der Gradle-Datei des Moduls (auf Anwendungsebene, in der Regel app/build.gradle) die Abhängigkeiten für die ML Kit-Android-Bibliotheken hinzu:
    apply plugin: 'com.android.application'
    apply plugin: 'com.google.gms.google-services'
    
    dependencies {
      // ...
    
      implementation 'com.google.firebase:firebase-ml-vision:24.0.3'
    }
  3. Wenn Sie cloudbasierte APIs für Ihr Projekt noch nicht aktiviert haben, tun Sie dies jetzt:

    1. Öffnen Sie in der Firebase-Konsole die Seite ML Kit APIs.
    2. Wenn Sie Ihr Projekt noch nicht auf einen Blaze-Tarif umgestellt haben, klicken Sie auf Upgrade. Sie werden nur dann zum Umstellen aufgefordert, wenn Ihr Projekt nicht den Blaze-Tarif hat.

      Cloud-basierte APIs können nur in Projekten auf Blaze-Ebene verwendet werden.

    3. Wenn cloudbasierte APIs noch nicht aktiviert sind, klicken Sie auf Cloudbasierte APIs aktivieren.

Wahrzeichen-Erkennung konfigurieren

Standardmäßig verwendet der Cloud-Detektor die STABLE-Version des Modells und gibt bis zu 10 Ergebnisse zurück. Wenn Sie eine dieser Einstellungen ändern möchten, geben Sie sie mit einem FirebaseVisionCloudDetectorOptions-Objekt an.

Wenn Sie beispielsweise beide Standardeinstellungen ändern möchten, erstellen Sie ein FirebaseVisionCloudDetectorOptions-Objekt wie im folgenden Beispiel:

Java

FirebaseVisionCloudDetectorOptions options =
        new FirebaseVisionCloudDetectorOptions.Builder()
                .setModelType(FirebaseVisionCloudDetectorOptions.LATEST_MODEL)
                .setMaxResults(15)
                .build();

Kotlin

val options = FirebaseVisionCloudDetectorOptions.Builder()
        .setModelType(FirebaseVisionCloudDetectorOptions.LATEST_MODEL)
        .setMaxResults(15)
        .build()

Wenn Sie die Standardeinstellungen verwenden möchten, können Sie im nächsten Schritt FirebaseVisionCloudDetectorOptions.DEFAULT eingeben.

Landmark-Erkennung ausführen

Wenn Sie Markierungen in einem Bild erkennen möchten, erstellen Sie ein FirebaseVisionImage-Objekt aus einem Bitmap-, media.Image-, ByteBuffer-, Byte-Array oder einer Datei auf dem Gerät. Übergeben Sie dann das FirebaseVisionImage-Objekt an die detectInImage-Methode von FirebaseVisionCloudLandmarkDetector.

  1. Erstellen Sie aus Ihrem Bild ein FirebaseVisionImage-Objekt.

    • Wenn Sie ein FirebaseVisionImage-Objekt aus einem media.Image-Objekt erstellen möchten, z. B. wenn Sie ein Bild mit der Kamera eines Geräts aufnehmen, übergeben Sie das media.Image-Objekt und die Drehung des Bilds an FirebaseVisionImage.fromMediaImage().

      Wenn Sie die CameraX-Bibliothek verwenden, wird der Drehwert von den Klassen OnImageCapturedListener und ImageAnalysis.Analyzer für Sie berechnet. Sie müssen ihn also nur in eine der ROTATION_-Konstanten von ML Kit umwandeln, bevor Sie FirebaseVisionImage.fromMediaImage() aufrufen:

      Java

      private class YourAnalyzer implements ImageAnalysis.Analyzer {
      
          private int degreesToFirebaseRotation(int degrees) {
              switch (degrees) {
                  case 0:
                      return FirebaseVisionImageMetadata.ROTATION_0;
                  case 90:
                      return FirebaseVisionImageMetadata.ROTATION_90;
                  case 180:
                      return FirebaseVisionImageMetadata.ROTATION_180;
                  case 270:
                      return FirebaseVisionImageMetadata.ROTATION_270;
                  default:
                      throw new IllegalArgumentException(
                              "Rotation must be 0, 90, 180, or 270.");
              }
          }
      
          @Override
          public void analyze(ImageProxy imageProxy, int degrees) {
              if (imageProxy == null || imageProxy.getImage() == null) {
                  return;
              }
              Image mediaImage = imageProxy.getImage();
              int rotation = degreesToFirebaseRotation(degrees);
              FirebaseVisionImage image =
                      FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
              // Pass image to an ML Kit Vision API
              // ...
          }
      }

      Kotlin

      private class YourImageAnalyzer : ImageAnalysis.Analyzer {
          private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) {
              0 -> FirebaseVisionImageMetadata.ROTATION_0
              90 -> FirebaseVisionImageMetadata.ROTATION_90
              180 -> FirebaseVisionImageMetadata.ROTATION_180
              270 -> FirebaseVisionImageMetadata.ROTATION_270
              else -> throw Exception("Rotation must be 0, 90, 180, or 270.")
          }
      
          override fun analyze(imageProxy: ImageProxy?, degrees: Int) {
              val mediaImage = imageProxy?.image
              val imageRotation = degreesToFirebaseRotation(degrees)
              if (mediaImage != null) {
                  val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation)
                  // Pass image to an ML Kit Vision API
                  // ...
              }
          }
      }

      Wenn Sie keine Kamerabibliothek verwenden, die die Drehung des Bildes angibt, können Sie sie anhand der Drehung des Geräts und der Ausrichtung des Kamerasensors im Gerät berechnen:

      Java

      private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
      static {
          ORIENTATIONS.append(Surface.ROTATION_0, 90);
          ORIENTATIONS.append(Surface.ROTATION_90, 0);
          ORIENTATIONS.append(Surface.ROTATION_180, 270);
          ORIENTATIONS.append(Surface.ROTATION_270, 180);
      }
      
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      private int getRotationCompensation(String cameraId, Activity activity, Context context)
              throws CameraAccessException {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
          int rotationCompensation = ORIENTATIONS.get(deviceRotation);
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE);
          int sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION);
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360;
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          int result;
          switch (rotationCompensation) {
              case 0:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  break;
              case 90:
                  result = FirebaseVisionImageMetadata.ROTATION_90;
                  break;
              case 180:
                  result = FirebaseVisionImageMetadata.ROTATION_180;
                  break;
              case 270:
                  result = FirebaseVisionImageMetadata.ROTATION_270;
                  break;
              default:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  Log.e(TAG, "Bad rotation value: " + rotationCompensation);
          }
          return result;
      }

      Kotlin

      private val ORIENTATIONS = SparseIntArray()
      
      init {
          ORIENTATIONS.append(Surface.ROTATION_0, 90)
          ORIENTATIONS.append(Surface.ROTATION_90, 0)
          ORIENTATIONS.append(Surface.ROTATION_180, 270)
          ORIENTATIONS.append(Surface.ROTATION_270, 180)
      }
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      @Throws(CameraAccessException::class)
      private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          val deviceRotation = activity.windowManager.defaultDisplay.rotation
          var rotationCompensation = ORIENTATIONS.get(deviceRotation)
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager
          val sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION)!!
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          val result: Int
          when (rotationCompensation) {
              0 -> result = FirebaseVisionImageMetadata.ROTATION_0
              90 -> result = FirebaseVisionImageMetadata.ROTATION_90
              180 -> result = FirebaseVisionImageMetadata.ROTATION_180
              270 -> result = FirebaseVisionImageMetadata.ROTATION_270
              else -> {
                  result = FirebaseVisionImageMetadata.ROTATION_0
                  Log.e(TAG, "Bad rotation value: $rotationCompensation")
              }
          }
          return result
      }

      Übergeben Sie dann das media.Image-Objekt und den Drehwert an FirebaseVisionImage.fromMediaImage():

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);

      Kotlin

      val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
    • Wenn Sie ein FirebaseVisionImage-Objekt aus einem Datei-URI erstellen möchten, übergeben Sie den App-Kontext und den Datei-URI an FirebaseVisionImage.fromFilePath(). Das ist nützlich, wenn Sie mit einer ACTION_GET_CONTENT-Intent den Nutzer auffordern, ein Bild aus seiner Galerie-App auszuwählen.

      Java

      FirebaseVisionImage image;
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri);
      } catch (IOException e) {
          e.printStackTrace();
      }

      Kotlin

      val image: FirebaseVisionImage
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri)
      } catch (e: IOException) {
          e.printStackTrace()
      }
    • Wenn Sie ein FirebaseVisionImage-Objekt aus einem ByteBuffer oder einem Byte-Array erstellen möchten, berechnen Sie zuerst die Bilddrehung wie oben für die media.Image-Eingabe beschrieben.

      Erstellen Sie dann ein FirebaseVisionImageMetadata-Objekt, das die Höhe, Breite, Farbcodierung und Drehung des Bildes enthält:

      Java

      FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder()
              .setWidth(480)   // 480x360 is typically sufficient for
              .setHeight(360)  // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build();

      Kotlin

      val metadata = FirebaseVisionImageMetadata.Builder()
              .setWidth(480) // 480x360 is typically sufficient for
              .setHeight(360) // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build()

      Verwende den Puffer oder das Array und das Metadatenobjekt, um ein FirebaseVisionImage-Objekt zu erstellen:

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata);
      // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);

      Kotlin

      val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata)
      // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
    • So erstellen Sie ein FirebaseVisionImage-Objekt aus einem Bitmap-Objekt:

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);

      Kotlin

      val image = FirebaseVisionImage.fromBitmap(bitmap)
      Das vom Bitmap-Objekt dargestellte Bild muss aufrecht sein und darf nicht zusätzlich gedreht werden.

  2. Instanz von FirebaseVisionCloudLandmarkDetector abrufen:

    Java

    FirebaseVisionCloudLandmarkDetector detector = FirebaseVision.getInstance()
            .getVisionCloudLandmarkDetector();
    // Or, to change the default settings:
    // FirebaseVisionCloudLandmarkDetector detector = FirebaseVision.getInstance()
    //         .getVisionCloudLandmarkDetector(options);

    Kotlin

    val detector = FirebaseVision.getInstance()
            .visionCloudLandmarkDetector
    // Or, to change the default settings:
    // val detector = FirebaseVision.getInstance()
    //         .getVisionCloudLandmarkDetector(options)
  3. Übergeben Sie das Bild abschließend an die detectInImage-Methode:

    Java

    Task<List<FirebaseVisionCloudLandmark>> result = detector.detectInImage(image)
            .addOnSuccessListener(new OnSuccessListener<List<FirebaseVisionCloudLandmark>>() {
                @Override
                public void onSuccess(List<FirebaseVisionCloudLandmark> firebaseVisionCloudLandmarks) {
                    // Task completed successfully
                    // ...
                }
            })
            .addOnFailureListener(new OnFailureListener() {
                @Override
                public void onFailure(@NonNull Exception e) {
                    // Task failed with an exception
                    // ...
                }
            });

    Kotlin

    val result = detector.detectInImage(image)
            .addOnSuccessListener { firebaseVisionCloudLandmarks ->
                // Task completed successfully
                // ...
            }
            .addOnFailureListener { e ->
                // Task failed with an exception
                // ...
            }

Informationen zu den erkannten Sehenswürdigkeiten abrufen

Wenn die Landmark-Erkennung erfolgreich war, wird dem Erfolgs-Listener eine Liste von FirebaseVisionCloudLandmark-Objekten übergeben. Jedes FirebaseVisionCloudLandmark-Objekt steht für ein Wahrzeichen, das im Bild erkannt wurde. Für jede Sehenswürdigkeit können Sie die Begrenzungskoordinaten im Eingabebild, den Namen der Sehenswürdigkeit, ihre Breiten- und Längengrade, ihre Knowledge Graph-Entitäts-ID (falls verfügbar) und den Konfidenzwert der Übereinstimmung abrufen. Beispiel:

Java

for (FirebaseVisionCloudLandmark landmark: firebaseVisionCloudLandmarks) {

    Rect bounds = landmark.getBoundingBox();
    String landmarkName = landmark.getLandmark();
    String entityId = landmark.getEntityId();
    float confidence = landmark.getConfidence();

    // Multiple locations are possible, e.g., the location of the depicted
    // landmark and the location the picture was taken.
    for (FirebaseVisionLatLng loc: landmark.getLocations()) {
        double latitude = loc.getLatitude();
        double longitude = loc.getLongitude();
    }
}

Kotlin

for (landmark in firebaseVisionCloudLandmarks) {

    val bounds = landmark.boundingBox
    val landmarkName = landmark.landmark
    val entityId = landmark.entityId
    val confidence = landmark.confidence

    // Multiple locations are possible, e.g., the location of the depicted
    // landmark and the location the picture was taken.
    for (loc in landmark.locations) {
        val latitude = loc.latitude
        val longitude = loc.longitude
    }
}

Nächste Schritte