تصنيف الصور باستخدام تعلُّم الآلة من Firebase على نظام Android

يمكنك استخدام Firebase ML لتصنيف العناصر التي يتم التعرّف عليها في الصورة. اطّلِع على نظرة عامة للحصول على معلومات عن ميزات واجهة برمجة التطبيقات هذه.

قبل البدء

  1. أضِف Firebase إلى مشروع Android، في حال لم يسبق لك إجراء ذلك.
  2. في ملف Gradle للوحدة (على مستوى التطبيق) (عادةً <project>/<app-module>/build.gradle.kts أو <project>/<app-module>/build.gradle)، أضِف الاعتمادية لمكتبة Firebase ML Vision لنظام التشغيل Android. ننصحك باستخدام الرمز Firebase Android BoM للتحكّم في إصدارات المكتبة.
    dependencies {
        // Import the BoM for the Firebase platform
        implementation(platform("com.google.firebase:firebase-bom:33.7.0"))
    
        // Add the dependency for the Firebase ML Vision library
        // When using the BoM, you don't specify versions in Firebase library dependencies
        implementation 'com.google.firebase:firebase-ml-vision'
    }

    باستخدام Firebase Android BoM، سيستخدم تطبيقك دائمًا إصدارات متوافقة من مكتبات Firebase لنظام التشغيل Android.

    (بديل)  إضافة تبعيات مكتبة Firebase بدون استخدام BoM

    إذا اخترت عدم استخدام Firebase BoM، يجب تحديد كل إصدار من مكتبة Firebase في سطر التبعية الخاص به.

    يُرجى العلم أنّه في حال استخدام مكتبات Firebase متعدّدة في تطبيقك، ننصحك بشدة باستخدام BoM لإدارة إصدارات المكتبة، ما يضمن توافق جميع الإصدارات.

    dependencies {
        // Add the dependency for the Firebase ML Vision library
        // When NOT using the BoM, you must specify versions in Firebase library dependencies
        implementation 'com.google.firebase:firebase-ml-vision:24.1.0'
    }
    هل تبحث عن وحدة مكتبة خاصة بلغة Kotlin؟ اعتبارًا من تشرين الأول (أكتوبر) 2023 (Firebase BoM 32.5.0)، يمكن لمطوّري Kotlin وJava الاعتماد على وحدة المكتبة الرئيسية (للاطّلاع على التفاصيل، راجِع الأسئلة الشائعة حول هذه المبادرة).
  3. إذا لم يسبق لك تفعيل واجهات برمجة التطبيقات المستندة إلى السحابة الإلكترونية لمشروعك، عليك إجراء ذلك الآن:

    1. افتح Firebase ML صفحة واجهات برمجة التطبيقات في وحدة تحكّم Firebase.
    2. إذا لم تكن قد أجريت ترقية لمشروعك إلى خطة أسعار Blaze، انقر على ترقية لإجراء ذلك. (لن يُطلب منك إجراء الترقية إلا إذا كان مشروعك غير مُدرَج في خطة Blaze).

      يمكن للمشاريع على مستوى Blaze فقط استخدام واجهات برمجة التطبيقات المستندة إلى Cloud.

    3. إذا لم تكن واجهات برمجة التطبيقات المستندة إلى السحابة الإلكترونية مفعّلة، انقر على تفعيل واجهات برمجة التطبيقات المستندة إلى السحابة الإلكترونية.

أنت الآن جاهز لتصنيف الصور.

1. تجهيز صورة الإدخال

أنشئ عنصرًا FirebaseVisionImage من صورتك. يتم تشغيل أداة وضع العلامات على الصور بأسرع شكل عند استخدام Bitmap أو media.Image بتنسيق JPEG في حال استخدام camera2 API، ويُنصح باستخدامهما كلما أمكن.

  • لإنشاء عنصر FirebaseVisionImage من media.Image، مثلاً عند التقاط صورة من كاميرا الجهاز، عليك تمرير عنصر media.Image ودرجة دوران الصورة إلى FirebaseVisionImage.fromMediaImage().

    إذا كنت تستخدِم مكتبة CameraX، تحتسِب فئةOnImageCapturedListener و ImageAnalysis.Analyzer قيمة الدوران بالنيابة عنك، لذا ما عليك سوى تحويل الدوران إلى أحد ROTATION_ Firebase ML الثابتة قبل استدعاء FirebaseVisionImage.fromMediaImage():

    Kotlin

    private class YourImageAnalyzer : ImageAnalysis.Analyzer {
        private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) {
            0 -> FirebaseVisionImageMetadata.ROTATION_0
            90 -> FirebaseVisionImageMetadata.ROTATION_90
            180 -> FirebaseVisionImageMetadata.ROTATION_180
            270 -> FirebaseVisionImageMetadata.ROTATION_270
            else -> throw Exception("Rotation must be 0, 90, 180, or 270.")
        }
    
        override fun analyze(imageProxy: ImageProxy?, degrees: Int) {
            val mediaImage = imageProxy?.image
            val imageRotation = degreesToFirebaseRotation(degrees)
            if (mediaImage != null) {
                val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation)
                // Pass image to an ML Vision API
                // ...
            }
        }
    }

    Java

    private class YourAnalyzer implements ImageAnalysis.Analyzer {
    
        private int degreesToFirebaseRotation(int degrees) {
            switch (degrees) {
                case 0:
                    return FirebaseVisionImageMetadata.ROTATION_0;
                case 90:
                    return FirebaseVisionImageMetadata.ROTATION_90;
                case 180:
                    return FirebaseVisionImageMetadata.ROTATION_180;
                case 270:
                    return FirebaseVisionImageMetadata.ROTATION_270;
                default:
                    throw new IllegalArgumentException(
                            "Rotation must be 0, 90, 180, or 270.");
            }
        }
    
        @Override
        public void analyze(ImageProxy imageProxy, int degrees) {
            if (imageProxy == null || imageProxy.getImage() == null) {
                return;
            }
            Image mediaImage = imageProxy.getImage();
            int rotation = degreesToFirebaseRotation(degrees);
            FirebaseVisionImage image =
                    FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
            // Pass image to an ML Vision API
            // ...
        }
    }

    إذا كنت لا تستخدم مكتبة كاميرا تمنحك معلومات عن دوران الصورة، يمكنك احتسابها من خلال دوران الجهاز واتجاه كاميرا الاستشعار في الجهاز:

    Kotlin

    private val ORIENTATIONS = SparseIntArray()
    
    init {
        ORIENTATIONS.append(Surface.ROTATION_0, 90)
        ORIENTATIONS.append(Surface.ROTATION_90, 0)
        ORIENTATIONS.append(Surface.ROTATION_180, 270)
        ORIENTATIONS.append(Surface.ROTATION_270, 180)
    }
    /**
     * Get the angle by which an image must be rotated given the device's current
     * orientation.
     */
    @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
    @Throws(CameraAccessException::class)
    private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int {
        // Get the device's current rotation relative to its "native" orientation.
        // Then, from the ORIENTATIONS table, look up the angle the image must be
        // rotated to compensate for the device's rotation.
        val deviceRotation = activity.windowManager.defaultDisplay.rotation
        var rotationCompensation = ORIENTATIONS.get(deviceRotation)
    
        // On most devices, the sensor orientation is 90 degrees, but for some
        // devices it is 270 degrees. For devices with a sensor orientation of
        // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
        val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager
        val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!
        rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360
    
        // Return the corresponding FirebaseVisionImageMetadata rotation value.
        val result: Int
        when (rotationCompensation) {
            0 -> result = FirebaseVisionImageMetadata.ROTATION_0
            90 -> result = FirebaseVisionImageMetadata.ROTATION_90
            180 -> result = FirebaseVisionImageMetadata.ROTATION_180
            270 -> result = FirebaseVisionImageMetadata.ROTATION_270
            else -> {
                result = FirebaseVisionImageMetadata.ROTATION_0
                Log.e(TAG, "Bad rotation value: $rotationCompensation")
            }
        }
        return result
    }

    Java

    private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
    static {
        ORIENTATIONS.append(Surface.ROTATION_0, 90);
        ORIENTATIONS.append(Surface.ROTATION_90, 0);
        ORIENTATIONS.append(Surface.ROTATION_180, 270);
        ORIENTATIONS.append(Surface.ROTATION_270, 180);
    }
    
    /**
     * Get the angle by which an image must be rotated given the device's current
     * orientation.
     */
    @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
    private int getRotationCompensation(String cameraId, Activity activity, Context context)
            throws CameraAccessException {
        // Get the device's current rotation relative to its "native" orientation.
        // Then, from the ORIENTATIONS table, look up the angle the image must be
        // rotated to compensate for the device's rotation.
        int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
        int rotationCompensation = ORIENTATIONS.get(deviceRotation);
    
        // On most devices, the sensor orientation is 90 degrees, but for some
        // devices it is 270 degrees. For devices with a sensor orientation of
        // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
        CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE);
        int sensorOrientation = cameraManager
                .getCameraCharacteristics(cameraId)
                .get(CameraCharacteristics.SENSOR_ORIENTATION);
        rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360;
    
        // Return the corresponding FirebaseVisionImageMetadata rotation value.
        int result;
        switch (rotationCompensation) {
            case 0:
                result = FirebaseVisionImageMetadata.ROTATION_0;
                break;
            case 90:
                result = FirebaseVisionImageMetadata.ROTATION_90;
                break;
            case 180:
                result = FirebaseVisionImageMetadata.ROTATION_180;
                break;
            case 270:
                result = FirebaseVisionImageMetadata.ROTATION_270;
                break;
            default:
                result = FirebaseVisionImageMetadata.ROTATION_0;
                Log.e(TAG, "Bad rotation value: " + rotationCompensation);
        }
        return result;
    }

    بعد ذلك، مرِّر العنصر media.Image وقيمة الدوران إلى FirebaseVisionImage.fromMediaImage():

    Kotlin

    val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)

    Java

    FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
  • لإنشاء عنصر FirebaseVisionImage من معرّف موارد منتظم لملف، عليك تمرير سياق التطبيق ومعرّف الموارد المنتظم للملف إلى FirebaseVisionImage.fromFilePath(). يكون ذلك مفيدًا عند استخدام نية ACTION_GET_CONTENT لطلب تحديد صورة من تطبيق معرض الصور.

    Kotlin

    val image: FirebaseVisionImage
    try {
        image = FirebaseVisionImage.fromFilePath(context, uri)
    } catch (e: IOException) {
        e.printStackTrace()
    }

    Java

    FirebaseVisionImage image;
    try {
        image = FirebaseVisionImage.fromFilePath(context, uri);
    } catch (IOException e) {
        e.printStackTrace();
    }
  • لإنشاء عنصر FirebaseVisionImage من ByteBuffer أو صفيف بايت، يجب أولاً احتساب ملفه الشخصي للدوران كما هو موضّح أعلاه لإدخال media.Image.

    بعد ذلك، أنشئ عنصرًا من النوع FirebaseVisionImageMetadata يحتوي على ارتفاع الصورة وعرضها وتنسيق ترميز اللون وتدويرها:

    Kotlin

    val metadata = FirebaseVisionImageMetadata.Builder()
        .setWidth(480) // 480x360 is typically sufficient for
        .setHeight(360) // image recognition
        .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
        .setRotation(rotation)
        .build()

    Java

    FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder()
            .setWidth(480)   // 480x360 is typically sufficient for
            .setHeight(360)  // image recognition
            .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
            .setRotation(rotation)
            .build();

    استخدِم المخزن المؤقت أو الصفيف وعنصر البيانات الوصفية لإنشاء عنصر FirebaseVisionImage:

    Kotlin

    val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata)
    // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)

    Java

    FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata);
    // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
  • لإنشاء عنصر FirebaseVisionImage من عنصر Bitmap:

    Kotlin

    val image = FirebaseVisionImage.fromBitmap(bitmap)

    Java

    FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
    يجب أن تكون الصورة التي يمثّلها عنصر Bitmap منتصبة، بدون الحاجة إلى إجراء أيّ دوران إضافي.

2- ضبط أداة تصنيف الصور وتشغيلها

لتصنيف الأجسام في صورة، مرِّر عنصر FirebaseVisionImage إلى processImage في FirebaseVisionImageLabeler.

  1. أولاً، احصل على مثيل من FirebaseVisionImageLabeler.

    Kotlin

    val labeler = FirebaseVision.getInstance().getCloudImageLabeler()
    
    // Or, to set the minimum confidence required:
    // val options = FirebaseVisionCloudImageLabelerOptions.Builder()
    //     .setConfidenceThreshold(0.7f)
    //     .build()
    // val labeler = FirebaseVision.getInstance().getCloudImageLabeler(options)
    

    Java

    FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance()
        .getCloudImageLabeler();
    
    // Or, to set the minimum confidence required:
    // FirebaseVisionCloudImageLabelerOptions options =
    //     new FirebaseVisionCloudImageLabelerOptions.Builder()
    //         .setConfidenceThreshold(0.7f)
    //         .build();
    // FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance()
    //     .getCloudImageLabeler(options);
    

  2. بعد ذلك، نقْل الصورة إلى طريقة processImage():

    Kotlin

    labeler.processImage(image)
        .addOnSuccessListener { labels ->
          // Task completed successfully
          // ...
        }
        .addOnFailureListener { e ->
          // Task failed with an exception
          // ...
        }
    

    Java

    labeler.processImage(image)
        .addOnSuccessListener(new OnSuccessListener<List<FirebaseVisionImageLabel>>() {
          @Override
          public void onSuccess(List<FirebaseVisionImageLabel> labels) {
            // Task completed successfully
            // ...
          }
        })
        .addOnFailureListener(new OnFailureListener() {
          @Override
          public void onFailure(@NonNull Exception e) {
            // Task failed with an exception
            // ...
          }
        });
    

3- الحصول على معلومات عن الأجسام المصنَّفة

في حال نجاح عملية تصنيف الصور، سيتم تمرير قائمة بعناصر FirebaseVisionImageLabel إلى معالج النجاح. يمثّل كل عنصر FirebaseVisionImageLabel شيئًا تم تصنيفه في الصورة. لكل تصنيف، يمكنك الحصول على وصف نص التصنيف، ومعرّف عنصر "الشبكة المعرفية" (إذا كان متاحًا)، ودرجة الثقة في المطابقة. على سبيل المثال:

Kotlin

for (label in labels) {
  val text = label.text
  val entityId = label.entityId
  val confidence = label.confidence
}

Java

for (FirebaseVisionImageLabel label: labels) {
  String text = label.getText();
  String entityId = label.getEntityId();
  float confidence = label.getConfidence();
}

الخطوات التالية