Après avoir entraîné votre propre modèle à l'aide d'AutoML Vision Edge , vous pouvez l'utiliser dans votre application pour étiqueter les images.
Il existe deux manières d'intégrer des modèles formés à partir d'AutoML Vision Edge : vous pouvez regrouper le modèle en le plaçant dans le dossier d'actifs de votre application, ou vous pouvez le télécharger dynamiquement depuis Firebase.
Options de regroupement de modèles | |
---|---|
Intégré dans votre application |
|
Hébergé avec Firebase |
|
Avant que tu commences
Ajoutez les dépendances des bibliothèques ML Kit Android au fichier gradle au niveau de l'application de votre module, qui est généralement
app/build.gradle
:Pour regrouper un modèle avec votre application :
dependencies { // ... // Image labeling feature with bundled automl model implementation 'com.google.mlkit:image-labeling-custom:16.3.1' }
Pour télécharger dynamiquement un modèle depuis Firebase, ajoutez la dépendance
linkFirebase
:dependencies { // ... // Image labeling feature with automl model downloaded // from firebase implementation 'com.google.mlkit:image-labeling-custom:16.3.1' implementation 'com.google.mlkit:linkfirebase:16.1.0' }
Si vous souhaitez télécharger un modèle , assurez-vous d'ajouter Firebase à votre projet Android , si vous ne l'avez pas déjà fait. Cela n’est pas obligatoire lorsque vous regroupez le modèle.
1. Chargez le modèle
Configurer une source de modèle locale
Pour regrouper le modèle avec votre application :
Extrayez le modèle et ses métadonnées de l'archive zip que vous avez téléchargée depuis la console Firebase. Nous vous recommandons d'utiliser les fichiers tels que vous les avez téléchargés, sans modification (y compris les noms de fichiers).
Incluez votre modèle et ses fichiers de métadonnées dans votre package d'application :
- Si vous n'avez pas de dossier d'actifs dans votre projet, créez-en un en cliquant avec le bouton droit sur le dossier
app/
, puis en cliquant sur Nouveau > Dossier > Dossier d'actifs . - Créez un sous-dossier sous le dossier Assets pour contenir les fichiers de modèle.
- Copiez les fichiers
model.tflite
,dict.txt
etmanifest.json
dans le sous-dossier (les trois fichiers doivent être dans le même dossier).
- Si vous n'avez pas de dossier d'actifs dans votre projet, créez-en un en cliquant avec le bouton droit sur le dossier
Ajoutez les éléments suivants au fichier
build.gradle
de votre application pour vous assurer que Gradle ne compresse pas le fichier modèle lors de la création de l'application :android { // ... aaptOptions { noCompress "tflite" } }
Le fichier modèle sera inclus dans le package d'application et disponible pour ML Kit en tant qu'actif brut.
Créez un objet
LocalModel
en spécifiant le chemin d'accès au fichier manifeste du modèle :Java
AutoMLImageLabelerLocalModel localModel = new AutoMLImageLabelerLocalModel.Builder() .setAssetFilePath("manifest.json") // or .setAbsoluteFilePath(absolute file path to manifest file) .build();
Kotlin
val localModel = LocalModel.Builder() .setAssetManifestFilePath("manifest.json") // or .setAbsoluteManifestFilePath(absolute file path to manifest file) .build()
Configurer une source de modèle hébergée par Firebase
Pour utiliser le modèle hébergé à distance, créez un objet CustomRemoteModel
, en spécifiant le nom que vous avez attribué au modèle lors de sa publication :
Java
// Specify the name you assigned in the Firebase console.
FirebaseModelSource firebaseModelSource =
new FirebaseModelSource.Builder("your_model_name").build();
CustomRemoteModel remoteModel =
new CustomRemoteModel.Builder(firebaseModelSource).build();
Kotlin
// Specify the name you assigned in the Firebase console.
val firebaseModelSource = FirebaseModelSource.Builder("your_model_name")
.build()
val remoteModel = CustomRemoteModel.Builder(firebaseModelSource).build()
Ensuite, démarrez la tâche de téléchargement du modèle, en spécifiant les conditions dans lesquelles vous souhaitez autoriser le téléchargement. Si le modèle n'est pas sur l'appareil ou si une version plus récente du modèle est disponible, la tâche téléchargera le modèle de manière asynchrone depuis Firebase :
Java
DownloadConditions downloadConditions = new DownloadConditions.Builder()
.requireWifi()
.build();
RemoteModelManager.getInstance().download(remoteModel, downloadConditions)
.addOnSuccessListener(new OnSuccessListener<Void>() {
@Override
public void onSuccess(@NonNull Task<Void> task) {
// Success.
}
});
Kotlin
val downloadConditions = DownloadConditions.Builder()
.requireWifi()
.build()
RemoteModelManager.getInstance().download(remoteModel, downloadConditions)
.addOnSuccessListener {
// Success.
}
De nombreuses applications démarrent la tâche de téléchargement dans leur code d'initialisation, mais vous pouvez le faire à tout moment avant de devoir utiliser le modèle.
Créez un étiqueteur d'image à partir de votre modèle
Après avoir configuré vos sources de modèle, créez un objet ImageLabeler
à partir de l'une d'entre elles.
Si vous disposez uniquement d'un modèle regroupé localement, créez simplement un étiqueteur à partir de votre objet CustomImageLabelerOptions
et configurez le seuil de score de confiance que vous souhaitez exiger (voir Évaluer votre modèle ) :
Java
CustomImageLabelerOptions customImageLabelerOptions = new CustomImageLabelerOptions.Builder(localModel)
.setConfidenceThreshold(0.0f) // Evaluate your model in the Cloud console
// to determine an appropriate value.
.build();
ImageLabeler labeler = ImageLabeling.getClient(customImageLabelerOptions);
Kotlin
val customImageLabelerOptions = CustomImageLabelerOptions.Builder(localModel)
.setConfidenceThreshold(0.0f) // Evaluate your model in the Cloud console
// to determine an appropriate value.
.build()
val labeler = ImageLabeling.getClient(customImageLabelerOptions)
Si vous disposez d'un modèle hébergé à distance, vous devrez vérifier qu'il a été téléchargé avant de l'exécuter. Vous pouvez vérifier l'état de la tâche de téléchargement de modèle à l'aide de la méthode isModelDownloaded()
du gestionnaire de modèles.
Bien que vous n'ayez qu'à confirmer cela avant d'exécuter l'étiqueteur d'images, si vous disposez à la fois d'un modèle hébergé à distance et d'un modèle regroupé localement, il peut être judicieux d'effectuer cette vérification lors de l'instanciation de l'étiqueteur d'image : créez un étiqueteur à partir du modèle distant si il a été téléchargé, et à partir du modèle local sinon.
Java
RemoteModelManager.getInstance().isModelDownloaded(remoteModel)
.addOnSuccessListener(new OnSuccessListener<Boolean>() {
@Override
public void onSuccess(Boolean isDownloaded) {
CustomImageLabelerOptions.Builder optionsBuilder;
if (isDownloaded) {
optionsBuilder = new CustomImageLabelerOptions.Builder(remoteModel);
} else {
optionsBuilder = new CustomImageLabelerOptions.Builder(localModel);
}
CustomImageLabelerOptions options = optionsBuilder
.setConfidenceThreshold(0.0f) // Evaluate your model in the Cloud console
// to determine an appropriate threshold.
.build();
ImageLabeler labeler = ImageLabeling.getClient(options);
}
});
Kotlin
RemoteModelManager.getInstance().isModelDownloaded(remoteModel)
.addOnSuccessListener { isDownloaded ->
val optionsBuilder =
if (isDownloaded) {
CustomImageLabelerOptions.Builder(remoteModel)
} else {
CustomImageLabelerOptions.Builder(localModel)
}
// Evaluate your model in the Cloud console to determine an appropriate threshold.
val options = optionsBuilder.setConfidenceThreshold(0.0f).build()
val labeler = ImageLabeling.getClient(options)
}
Si vous disposez uniquement d'un modèle hébergé à distance, vous devez désactiver les fonctionnalités liées au modèle (par exemple, griser ou masquer une partie de votre interface utilisateur) jusqu'à ce que vous confirmiez que le modèle a été téléchargé. Vous pouvez le faire en attachant un écouteur à la méthode download()
du gestionnaire de modèles :
Java
RemoteModelManager.getInstance().download(remoteModel, conditions)
.addOnSuccessListener(new OnSuccessListener<Void>() {
@Override
public void onSuccess(Void v) {
// Download complete. Depending on your app, you could enable
// the ML feature, or switch from the local model to the remote
// model, etc.
}
});
Kotlin
RemoteModelManager.getInstance().download(remoteModel, conditions)
.addOnSuccessListener {
// Download complete. Depending on your app, you could enable the ML
// feature, or switch from the local model to the remote model, etc.
}
2. Préparez l'image d'entrée
Ensuite, pour chaque image que vous souhaitez étiqueter, créez un objet InputImage
à partir de votre image. L'étiqueteur d'images s'exécute plus rapidement lorsque vous utilisez un Bitmap
ou, si vous utilisez l'API camera2, un media.Image
YUV_420_888 , qui sont recommandés lorsque cela est possible.
Vous pouvez créer un InputImage
à partir de différentes sources, chacune est expliquée ci-dessous.
Utiliser un media.Image
Pour créer un objet InputImage
à partir d'un objet media.Image
, par exemple lorsque vous capturez une image à partir de la caméra d'un appareil, transmettez l'objet media.Image
et la rotation de l'image à InputImage.fromMediaImage()
.
Si vous utilisez la bibliothèque CameraX , les classes OnImageCapturedListener
et ImageAnalysis.Analyzer
calculent la valeur de rotation pour vous.
Kotlin+KTX
private class YourImageAnalyzer : ImageAnalysis.Analyzer { override fun analyze(imageProxy: ImageProxy?) { val mediaImage = imageProxy?.image if (mediaImage != null) { val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees) // Pass image to an ML Kit Vision API // ... } } }
Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { @Override public void analyze(ImageProxy imageProxy) { if (imageProxy == null || imageProxy.getImage() == null) { return; } Image mediaImage = imageProxy.getImage(); InputImage image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees); // Pass image to an ML Kit Vision API // ... } }
Si vous n'utilisez pas de bibliothèque de caméras qui vous donne le degré de rotation de l'image, vous pouvez le calculer à partir du degré de rotation de l'appareil et de l'orientation du capteur de la caméra dans l'appareil :
Kotlin+KTX
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 90) ORIENTATIONS.append(Surface.ROTATION_90, 0) ORIENTATIONS.append(Surface.ROTATION_180, 270) ORIENTATIONS.append(Surface.ROTATION_270, 180) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360 // Return the corresponding FirebaseVisionImageMetadata rotation value. val result: Int when (rotationCompensation) { 0 -> result = FirebaseVisionImageMetadata.ROTATION_0 90 -> result = FirebaseVisionImageMetadata.ROTATION_90 180 -> result = FirebaseVisionImageMetadata.ROTATION_180 270 -> result = FirebaseVisionImageMetadata.ROTATION_270 else -> { result = FirebaseVisionImageMetadata.ROTATION_0 Log.e(TAG, "Bad rotation value: $rotationCompensation") } } return result }
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 90); ORIENTATIONS.append(Surface.ROTATION_90, 0); ORIENTATIONS.append(Surface.ROTATION_180, 270); ORIENTATIONS.append(Surface.ROTATION_270, 180); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, Context context) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360; // Return the corresponding FirebaseVisionImageMetadata rotation value. int result; switch (rotationCompensation) { case 0: result = FirebaseVisionImageMetadata.ROTATION_0; break; case 90: result = FirebaseVisionImageMetadata.ROTATION_90; break; case 180: result = FirebaseVisionImageMetadata.ROTATION_180; break; case 270: result = FirebaseVisionImageMetadata.ROTATION_270; break; default: result = FirebaseVisionImageMetadata.ROTATION_0; Log.e(TAG, "Bad rotation value: " + rotationCompensation); } return result; }
Ensuite, transmettez l'objet media.Image
et la valeur du degré de rotation à InputImage.fromMediaImage()
:
Kotlin+KTX
val image = InputImage.fromMediaImage(mediaImage, rotation)
Java
InputImage image = InputImage.fromMediaImage(mediaImage, rotation);
Utilisation d'un URI de fichier
Pour créer un objet InputImage
à partir d'un URI de fichier, transmettez le contexte de l'application et l'URI du fichier à InputImage.fromFilePath()
. Ceci est utile lorsque vous utilisez une intention ACTION_GET_CONTENT
pour inviter l'utilisateur à sélectionner une image dans son application de galerie.
Kotlin+KTX
val image: InputImage try { image = InputImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
Java
InputImage image; try { image = InputImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
Utiliser un ByteBuffer
ou ByteArray
Pour créer un objet InputImage
à partir d'un ByteBuffer
ou d'un ByteArray
, calculez d'abord le degré de rotation de l'image comme décrit précédemment pour l'entrée media.Image
. Ensuite, créez l'objet InputImage
avec le tampon ou le tableau, ainsi que la hauteur, la largeur, le format d'encodage des couleurs et le degré de rotation de l'image :
Kotlin+KTX
val image = InputImage.fromByteBuffer( byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 )
Java
InputImage image = InputImage.fromByteBuffer(byteBuffer, /* image width */ 480, /* image height */ 360, rotationDegrees, InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12 );
Utiliser un Bitmap
Pour créer un objet InputImage
à partir d'un objet Bitmap
, effectuez la déclaration suivante :
Kotlin+KTX
val image = InputImage.fromBitmap(bitmap, 0)
Java
InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);
L'image est représentée par un objet Bitmap
avec des degrés de rotation.
3. Exécutez l'étiqueteur d'images
Pour étiqueter des objets dans une image, transmettez l'objet image
à la méthode process()
de ImageLabeler
.
Java
labeler.process(image)
.addOnSuccessListener(new OnSuccessListener<List<ImageLabel>>() {
@Override
public void onSuccess(List<ImageLabel> labels) {
// Task completed successfully
// ...
}
})
.addOnFailureListener(new OnFailureListener() {
@Override
public void onFailure(@NonNull Exception e) {
// Task failed with an exception
// ...
}
});
Kotlin
labeler.process(image)
.addOnSuccessListener { labels ->
// Task completed successfully
// ...
}
.addOnFailureListener { e ->
// Task failed with an exception
// ...
}
4. Obtenez des informations sur les objets étiquetés
Si l’opération d’étiquetage de l’image réussit, une liste d’objets ImageLabel
est transmise à l’écouteur de réussite. Chaque objet ImageLabel
représente quelque chose qui a été étiqueté dans l'image. Vous pouvez obtenir la description textuelle de chaque étiquette, le score de confiance de la correspondance et l'index de la correspondance. Par exemple:
Java
for (ImageLabel label : labels) {
String text = label.getText();
float confidence = label.getConfidence();
int index = label.getIndex();
}
Kotlin
for (label in labels) {
val text = label.text
val confidence = label.confidence
val index = label.index
}
Conseils pour améliorer les performances en temps réel
Si vous souhaitez étiqueter des images dans une application en temps réel, suivez ces directives pour obtenir les meilleures fréquences d'images :
- Limitez les appels à l’étiqueteur d’images. Si une nouvelle image vidéo devient disponible pendant l'exécution de l'étiqueteur d'images, supprimez l'image. Consultez la classe
VisionProcessorBase
dans l’exemple d’application de démarrage rapide pour un exemple. - Si vous utilisez la sortie de l'étiqueteur d'image pour superposer des graphiques sur l'image d'entrée, obtenez d'abord le résultat, puis effectuez le rendu de l'image et la superposition en une seule étape. Ce faisant, vous effectuez le rendu sur la surface d'affichage une seule fois pour chaque image d'entrée. Consultez les classes
CameraSourcePreview
etGraphicOverlay
dans l’exemple d’application de démarrage rapide pour un exemple. Si vous utilisez l'API Camera2, capturez des images au format
ImageFormat.YUV_420_888
.Si vous utilisez l'ancienne API Camera, capturez des images au format
ImageFormat.NV21
.