valremoteModel=FirebaseCustomRemoteModel.Builder("your_model").build()FirebaseModelManager.getInstance().getLatestModelFile(remoteModel).addOnCompleteListener{task->
valmodelFile=task.getResult()if(modelFile!=null){// Instantiate an org.tensorflow.lite.Interpreter object.interpreter=Interpreter(modelFile)}}
Java
FirebaseCustomRemoteModelremoteModel=newFirebaseCustomRemoteModel.Builder("your_model").build();FirebaseModelManager.getInstance().getLatestModelFile(remoteModel).addOnCompleteListener(newOnCompleteListener<File>(){@OverridepublicvoidonComplete(@NonNullTask<File>task){FilemodelFile=task.getResult();if(modelFile!=null){// Instantiate an org.tensorflow.lite.Interpreter object.Interpreterinterpreter=newInterpreter(modelFile);}}});
valinputOutputOptions=FirebaseModelInputOutputOptions.Builder().setInputFormat(0,FirebaseModelDataType.FLOAT32,intArrayOf(1,224,224,3)).setOutputFormat(0,FirebaseModelDataType.FLOAT32,intArrayOf(1,1000)).build()valinput=ByteBuffer.allocateDirect(224*224*3*4).order(ByteOrder.nativeOrder())// Then populate with input data.valinputs=FirebaseModelInputs.Builder().add(input).build()interpreter.run(inputs,inputOutputOptions).addOnSuccessListener{outputs->
// ...}.addOnFailureListener{// Task failed with an exception.// ...}
Java
FirebaseModelInputOutputOptionsinputOutputOptions=newFirebaseModelInputOutputOptions.Builder().setInputFormat(0,FirebaseModelDataType.FLOAT32,newint[]{1,224,224,3}).setOutputFormat(0,FirebaseModelDataType.FLOAT32,newint[]{1,1000}).build();float[][][][]input=newfloat[1][224][224][3];// Then populate with input data.FirebaseModelInputsinputs=newFirebaseModelInputs.Builder().add(input).build();interpreter.run(inputs,inputOutputOptions).addOnSuccessListener(newOnSuccessListener<FirebaseModelOutputs>(){@OverridepublicvoidonSuccess(FirebaseModelOutputsresult){// ...}}).addOnFailureListener(newOnFailureListener(){@OverridepublicvoidonFailure(@NonNullExceptione){// Task failed with an exception// ...}});
หลัง
Kotlin
valinBufferSize=1*224*224*3*java.lang.Float.SIZE/java.lang.Byte.SIZEvalinputBuffer=ByteBuffer.allocateDirect(inBufferSize).order(ByteOrder.nativeOrder())// Then populate with input data.valoutBufferSize=1*1000*java.lang.Float.SIZE/java.lang.Byte.SIZEvaloutputBuffer=ByteBuffer.allocateDirect(outBufferSize).order(ByteOrder.nativeOrder())interpreter.run(inputBuffer,outputBuffer)
Java
intinBufferSize=1*224*224*3*java.lang.Float.SIZE/java.lang.Byte.SIZE;ByteBufferinputBuffer=ByteBuffer.allocateDirect(inBufferSize).order(ByteOrder.nativeOrder());// Then populate with input data.intoutBufferSize=1*1000*java.lang.Float.SIZE/java.lang.Byte.SIZE;ByteBufferoutputBuffer=ByteBuffer.allocateDirect(outBufferSize).order(ByteOrder.nativeOrder());interpreter.run(inputBuffer,outputBuffer);
valoutput=result.getOutput(0)valprobabilities=output[0]try{valreader=BufferedReader(InputStreamReader(assets.open("custom_labels.txt")))for(probabilityinprobabilities){vallabel:String=reader.readLine()println("$label: $probability")}}catch(e:IOException){// File not found?}
Java
float[][]output=result.getOutput(0);float[]probabilities=output[0];try{BufferedReaderreader=newBufferedReader(newInputStreamReader(getAssets().open("custom_labels.txt")));for(floatprobability:probabilities){Stringlabel=reader.readLine();Log.i(TAG,String.format("%s: %1.4f",label,probability));}}catch(IOExceptione){// File not found?}
หลัง
Kotlin
modelOutput.rewind()valprobabilities=modelOutput.asFloatBuffer()try{valreader=BufferedReader(InputStreamReader(assets.open("custom_labels.txt")))for(iinprobabilities.capacity()){vallabel:String=reader.readLine()valprobability=probabilities.get(i)println("$label: $probability")}}catch(e:IOException){// File not found?}
Java
modelOutput.rewind();FloatBufferprobabilities=modelOutput.asFloatBuffer();try{BufferedReaderreader=newBufferedReader(newInputStreamReader(getAssets().open("custom_labels.txt")));for(inti=0;i < probabilities.capacity();i++){Stringlabel=reader.readLine();floatprobability=probabilities.get(i);Log.i(TAG,String.format("%s: %1.4f",label,probability));}}catch(IOExceptione){// File not found?}
[[["เข้าใจง่าย","easyToUnderstand","thumb-up"],["แก้ปัญหาของฉันได้","solvedMyProblem","thumb-up"],["อื่นๆ","otherUp","thumb-up"]],[["ไม่มีข้อมูลที่ฉันต้องการ","missingTheInformationINeed","thumb-down"],["ซับซ้อนเกินไป/มีหลายขั้นตอนมากเกินไป","tooComplicatedTooManySteps","thumb-down"],["ล้าสมัย","outOfDate","thumb-down"],["ปัญหาเกี่ยวกับการแปล","translationIssue","thumb-down"],["ตัวอย่าง/ปัญหาเกี่ยวกับโค้ด","samplesCodeIssue","thumb-down"],["อื่นๆ","otherDown","thumb-down"]],["อัปเดตล่าสุด 2025-09-06 UTC"],[],[],null,["\u003cbr /\u003e\n\nVersion 22.0.2 of the `firebase-ml-model-interpreter` library introduces a new\n`getLatestModelFile()` method, which gets the location on the device of custom\nmodels. You can use this method to directly instantiate a TensorFlow Lite\n`Interpreter` object, which you can use instead of the\n`FirebaseModelInterpreter` wrapper.\n\nGoing forward, this is the preferred approach. Because the TensorFlow Lite\ninterpreter version is no longer coupled with the Firebase library version, you\nhave more flexibility to upgrade to new versions of TensorFlow Lite when you\nwant, or more easily use custom TensorFlow Lite builds.\n\nThis page shows how you can migrate from using `FirebaseModelInterpreter` to the\nTensorFlow Lite `Interpreter`.\n\n1. Update project dependencies\n\nUpdate your project's dependencies to include version 22.0.2 of the\n`firebase-ml-model-interpreter` library (or newer) and the `tensorflow-lite`\nlibrary:\n\nBefore \n\n implementation(\"com.google.firebase:firebase-ml-model-interpreter:22.0.1\")\n\nAfter \n\n implementation(\"com.google.firebase:firebase-ml-model-interpreter:22.0.2\")\n implementation(\"org.tensorflow:tensorflow-lite:2.0.0\")\n\n2. Create a TensorFlow Lite interpreter instead of a FirebaseModelInterpreter\n\nInstead of creating a `FirebaseModelInterpreter`, get the model's location on\ndevice with `getLatestModelFile()` and use it to create a TensorFlow Lite\n`Interpreter`.\n\nBefore \n\nKotlin \n\n val remoteModel = FirebaseCustomRemoteModel.Builder(\"your_model\").build()\n val options = FirebaseModelInterpreterOptions.Builder(remoteModel).build()\n val interpreter = FirebaseModelInterpreter.getInstance(options)\n\nJava \n\n FirebaseCustomRemoteModel remoteModel =\n new FirebaseCustomRemoteModel.Builder(\"your_model\").build();\n FirebaseModelInterpreterOptions options =\n new FirebaseModelInterpreterOptions.Builder(remoteModel).build();\n FirebaseModelInterpreter interpreter = FirebaseModelInterpreter.getInstance(options);\n\nAfter \n\nKotlin \n\n val remoteModel = FirebaseCustomRemoteModel.Builder(\"your_model\").build()\n FirebaseModelManager.getInstance().getLatestModelFile(remoteModel)\n .addOnCompleteListener { task -\u003e\n val modelFile = task.getResult()\n if (modelFile != null) {\n // Instantiate an org.tensorflow.lite.Interpreter object.\n interpreter = Interpreter(modelFile)\n }\n }\n\nJava \n\n FirebaseCustomRemoteModel remoteModel =\n new FirebaseCustomRemoteModel.Builder(\"your_model\").build();\n FirebaseModelManager.getInstance().getLatestModelFile(remoteModel)\n .addOnCompleteListener(new OnCompleteListener\u003cFile\u003e() {\n @Override\n public void onComplete(@NonNull Task\u003cFile\u003e task) {\n File modelFile = task.getResult();\n if (modelFile != null) {\n // Instantiate an org.tensorflow.lite.Interpreter object.\n Interpreter interpreter = new Interpreter(modelFile);\n }\n }\n });\n\n3. Update input and output preparation code\n\nWith `FirebaseModelInterpreter`, you specify the model's input and output shapes\nby passing a `FirebaseModelInputOutputOptions` object to the interpreter when\nyou run it.\n\nFor the TensorFlow Lite interpreter, you instead allocate `ByteBuffer` objects\nwith the right size for your model's input and output.\n\nFor example, if your model has an input shape of \\[1 224 224 3\\] `float` values\nand an output shape of \\[1 1000\\] `float` values, make these changes:\n\nBefore \n\nKotlin \n\n val inputOutputOptions = FirebaseModelInputOutputOptions.Builder()\n .setInputFormat(0, FirebaseModelDataType.FLOAT32, intArrayOf(1, 224, 224, 3))\n .setOutputFormat(0, FirebaseModelDataType.FLOAT32, intArrayOf(1, 1000))\n .build()\n\n val input = ByteBuffer.allocateDirect(224*224*3*4).order(ByteOrder.nativeOrder())\n // Then populate with input data.\n\n val inputs = FirebaseModelInputs.Builder()\n .add(input)\n .build()\n\n interpreter.run(inputs, inputOutputOptions)\n .addOnSuccessListener { outputs -\u003e\n // ...\n }\n .addOnFailureListener {\n // Task failed with an exception.\n // ...\n }\n\nJava \n\n FirebaseModelInputOutputOptions inputOutputOptions =\n new FirebaseModelInputOutputOptions.Builder()\n .setInputFormat(0, FirebaseModelDataType.FLOAT32, new int[]{1, 224, 224, 3})\n .setOutputFormat(0, FirebaseModelDataType.FLOAT32, new int[]{1, 1000})\n .build();\n\n float[][][][] input = new float[1][224][224][3];\n // Then populate with input data.\n\n FirebaseModelInputs inputs = new FirebaseModelInputs.Builder()\n .add(input)\n .build();\n\n interpreter.run(inputs, inputOutputOptions)\n .addOnSuccessListener(\n new OnSuccessListener\u003cFirebaseModelOutputs\u003e() {\n @Override\n public void onSuccess(FirebaseModelOutputs result) {\n // ...\n }\n })\n .addOnFailureListener(\n new OnFailureListener() {\n @Override\n public void onFailure(@NonNull Exception e) {\n // Task failed with an exception\n // ...\n }\n });\n\nAfter \n\nKotlin \n\n val inBufferSize = 1 * 224 * 224 * 3 * java.lang.Float.SIZE / java.lang.Byte.SIZE\n val inputBuffer = ByteBuffer.allocateDirect(inBufferSize).order(ByteOrder.nativeOrder())\n // Then populate with input data.\n\n val outBufferSize = 1 * 1000 * java.lang.Float.SIZE / java.lang.Byte.SIZE\n val outputBuffer = ByteBuffer.allocateDirect(outBufferSize).order(ByteOrder.nativeOrder())\n\n interpreter.run(inputBuffer, outputBuffer)\n\nJava \n\n int inBufferSize = 1 * 224 * 224 * 3 * java.lang.Float.SIZE / java.lang.Byte.SIZE;\n ByteBuffer inputBuffer =\n ByteBuffer.allocateDirect(inBufferSize).order(ByteOrder.nativeOrder());\n // Then populate with input data.\n\n int outBufferSize = 1 * 1000 * java.lang.Float.SIZE / java.lang.Byte.SIZE;\n ByteBuffer outputBuffer =\n ByteBuffer.allocateDirect(outBufferSize).order(ByteOrder.nativeOrder());\n\n interpreter.run(inputBuffer, outputBuffer);\n\n4. Update output handling code\n\nFinally, instead of getting the model's output with the `FirebaseModelOutputs`\nobject's `getOutput()` method, convert the `ByteBuffer` output to whatever\nstructure is convenient for your use case.\n\nFor example, if you're doing classification, you might make changes like the\nfollowing:\n\nBefore \n\nKotlin \n\n val output = result.getOutput(0)\n val probabilities = output[0]\n try {\n val reader = BufferedReader(InputStreamReader(assets.open(\"custom_labels.txt\")))\n for (probability in probabilities) {\n val label: String = reader.readLine()\n println(\"$label: $probability\")\n }\n } catch (e: IOException) {\n // File not found?\n }\n\nJava \n\n float[][] output = result.getOutput(0);\n float[] probabilities = output[0];\n try {\n BufferedReader reader = new BufferedReader(\n new InputStreamReader(getAssets().open(\"custom_labels.txt\")));\n for (float probability : probabilities) {\n String label = reader.readLine();\n Log.i(TAG, String.format(\"%s: %1.4f\", label, probability));\n }\n } catch (IOException e) {\n // File not found?\n }\n\nAfter \n\nKotlin \n\n modelOutput.rewind()\n val probabilities = modelOutput.asFloatBuffer()\n try {\n val reader = BufferedReader(\n InputStreamReader(assets.open(\"custom_labels.txt\")))\n for (i in probabilities.capacity()) {\n val label: String = reader.readLine()\n val probability = probabilities.get(i)\n println(\"$label: $probability\")\n }\n } catch (e: IOException) {\n // File not found?\n }\n\nJava \n\n modelOutput.rewind();\n FloatBuffer probabilities = modelOutput.asFloatBuffer();\n try {\n BufferedReader reader = new BufferedReader(\n new InputStreamReader(getAssets().open(\"custom_labels.txt\")));\n for (int i = 0; i \u003c probabilities.capacity(); i++) {\n String label = reader.readLine();\n float probability = probabilities.get(i);\n Log.i(TAG, String.format(\"%s: %1.4f\", label, probability));\n }\n } catch (IOException e) {\n // File not found?\n }"]]