אתה יכול להשתמש ב-Firebase ML כדי לזהות טקסט בתמונות. ל-Firebase ML יש גם API לשימוש כללי המתאים לזיהוי טקסט בתמונות, כגון טקסט של שלט רחוב, וגם API המותאם לזיהוי טקסט של מסמכים.
לפני שאתה מתחיל
- אם עדיין לא עשית זאת, הוסף את Firebase לפרויקט Android שלך .
- בקובץ Gradle של המודול (ברמת האפליקציה) (בדרך כלל
<project>/<app-module>/build.gradle.kts
או<project>/<app-module>/build.gradle
), הוסף את התלות עבור Firebase ML ספריית Vision עבור אנדרואיד. אנו ממליצים להשתמש ב- Firebase Android BoM כדי לשלוט בגירסאות של הספרייה.dependencies { // Import the BoM for the Firebase platform implementation(platform("com.google.firebase:firebase-bom:32.6.0")) // Add the dependency for the Firebase ML Vision library // When using the BoM, you don't specify versions in Firebase library dependencies implementation 'com.google.firebase:firebase-ml-vision' }
באמצעות Firebase Android BoM , האפליקציה שלך תמיד תשתמש בגרסאות תואמות של ספריות Firebase Android.
מחפש מודול ספרייה ספציפי לקוטלין? החל מאוקטובר 2023 (Firebase BoM 32.5.0) , מפתחי Kotlin ו-Java יכולים להיות תלויים במודול הספרייה הראשי (לפרטים, עיין בשאלות הנפוצות לגבי יוזמה זו ).(אלטרנטיבי) הוסף תלות בספריית Firebase מבלי להשתמש ב-BoM
אם תבחר שלא להשתמש ב-Firebase BoM, עליך לציין כל גרסת ספריית Firebase בשורת התלות שלה.
שים לב שאם אתה משתמש במספר ספריות Firebase באפליקציה שלך, אנו ממליצים בחום להשתמש ב-BoM לניהול גרסאות ספרייה, מה שמבטיח שכל הגרסאות תואמות.
dependencies { // Add the dependency for the Firebase ML Vision library // When NOT using the BoM, you must specify versions in Firebase library dependencies implementation 'com.google.firebase:firebase-ml-vision:24.1.0' }
אם עדיין לא הפעלת ממשקי API מבוססי ענן עבור הפרויקט שלך, עשה זאת כעת:
- פתח את הדף Firebase ML APIs של מסוף Firebase.
אם עדיין לא שדרגת את הפרויקט שלך לתוכנית התמחור של Blaze, לחץ על שדרג כדי לעשות זאת. (תתבקש לשדרג רק אם הפרויקט שלך אינו בתוכנית Blaze.)
רק פרויקטים ברמת Blaze יכולים להשתמש בממשקי API מבוססי ענן.
- אם ממשקי API מבוססי ענן עדיין לא מופעלים, לחץ על הפעל ממשקי API מבוססי ענן .
עכשיו אתה מוכן להתחיל לזהות טקסט בתמונות.
הנחיות לקלט תמונה
כדי ש-Firebase ML יזהה טקסט במדויק, תמונות קלט חייבות להכיל טקסט שמיוצג על ידי מספיק נתוני פיקסלים. באופן אידיאלי, עבור טקסט לטיני, כל תו צריך להיות לפחות 16x16 פיקסלים. עבור טקסט סינית, יפנית וקוריאנית, כל תו צריך להיות בגודל 24x24 פיקסלים. עבור כל השפות, בדרך כלל אין יתרון דיוק עבור תווים גדולים מ-24x24 פיקסלים.
כך, למשל, תמונה בגודל 640x480 עשויה לעבוד היטב כדי לסרוק כרטיס ביקור שתופס את מלוא רוחב התמונה. כדי לסרוק מסמך מודפס על נייר בגודל Letter, ייתכן שתידרש תמונה בגודל 720x1280 פיקסלים.
מיקוד לקוי של תמונה יכול לפגוע בדיוק זיהוי הטקסט. אם אינך מקבל תוצאות מקובלות, נסה לבקש מהמשתמש לצלם מחדש את התמונה.
זיהוי טקסט בתמונות
כדי לזהות טקסט בתמונה, הפעל את מזהה הטקסט כמתואר להלן.
1. הפעל את מזהה הטקסט
כדי לזהות טקסט בתמונה, צור אובייקטFirebaseVisionImage
מ- Bitmap
, media.Image
, ByteBuffer
, מערך בתים או קובץ במכשיר. לאחר מכן, העבר את האובייקט FirebaseVisionImage
לשיטת processImage
של FirebaseVisionTextRecognizer
.צור אובייקט
FirebaseVisionImage
מהתמונה שלך.כדי ליצור אובייקט
FirebaseVisionImage
מאובייקטmedia.Image
, כגון בעת לכידת תמונה ממצלמה של מכשיר, העבר את אובייקטmedia.Image
וסיבוב התמונה ל-FirebaseVisionImage.fromMediaImage()
.אם אתה משתמש בספריית CameraX , המחלקות
OnImageCapturedListener
ו-ImageAnalysis.Analyzer
מחשבות עבורך את ערך הסיבוב, אז אתה רק צריך להמיר את הסיבוב לאחד מקבועיROTATION_
של Firebase ML לפני שתקראFirebaseVisionImage.fromMediaImage()
:Kotlin+KTX
private class YourImageAnalyzer : ImageAnalysis.Analyzer { private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) { 0 -> FirebaseVisionImageMetadata.ROTATION_0 90 -> FirebaseVisionImageMetadata.ROTATION_90 180 -> FirebaseVisionImageMetadata.ROTATION_180 270 -> FirebaseVisionImageMetadata.ROTATION_270 else -> throw Exception("Rotation must be 0, 90, 180, or 270.") } override fun analyze(imageProxy: ImageProxy?, degrees: Int) { val mediaImage = imageProxy?.image val imageRotation = degreesToFirebaseRotation(degrees) if (mediaImage != null) { val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation) // Pass image to an ML Vision API // ... } } }
Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { private int degreesToFirebaseRotation(int degrees) { switch (degrees) { case 0: return FirebaseVisionImageMetadata.ROTATION_0; case 90: return FirebaseVisionImageMetadata.ROTATION_90; case 180: return FirebaseVisionImageMetadata.ROTATION_180; case 270: return FirebaseVisionImageMetadata.ROTATION_270; default: throw new IllegalArgumentException( "Rotation must be 0, 90, 180, or 270."); } } @Override public void analyze(ImageProxy imageProxy, int degrees) { if (imageProxy == null || imageProxy.getImage() == null) { return; } Image mediaImage = imageProxy.getImage(); int rotation = degreesToFirebaseRotation(degrees); FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation); // Pass image to an ML Vision API // ... } }
אם אינכם משתמשים בספריית מצלמה שנותנת לכם את סיבוב התמונה, תוכלו לחשב זאת מסיבוב המכשיר ומכיוון חיישן המצלמה במכשיר:
Kotlin+KTX
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 90) ORIENTATIONS.append(Surface.ROTATION_90, 0) ORIENTATIONS.append(Surface.ROTATION_180, 270) ORIENTATIONS.append(Surface.ROTATION_270, 180) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360 // Return the corresponding FirebaseVisionImageMetadata rotation value. val result: Int when (rotationCompensation) { 0 -> result = FirebaseVisionImageMetadata.ROTATION_0 90 -> result = FirebaseVisionImageMetadata.ROTATION_90 180 -> result = FirebaseVisionImageMetadata.ROTATION_180 270 -> result = FirebaseVisionImageMetadata.ROTATION_270 else -> { result = FirebaseVisionImageMetadata.ROTATION_0 Log.e(TAG, "Bad rotation value: $rotationCompensation") } } return result }
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 90); ORIENTATIONS.append(Surface.ROTATION_90, 0); ORIENTATIONS.append(Surface.ROTATION_180, 270); ORIENTATIONS.append(Surface.ROTATION_270, 180); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, Context context) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360; // Return the corresponding FirebaseVisionImageMetadata rotation value. int result; switch (rotationCompensation) { case 0: result = FirebaseVisionImageMetadata.ROTATION_0; break; case 90: result = FirebaseVisionImageMetadata.ROTATION_90; break; case 180: result = FirebaseVisionImageMetadata.ROTATION_180; break; case 270: result = FirebaseVisionImageMetadata.ROTATION_270; break; default: result = FirebaseVisionImageMetadata.ROTATION_0; Log.e(TAG, "Bad rotation value: " + rotationCompensation); } return result; }
לאחר מכן, העבר את אובייקט
media.Image
ואת ערך הסיבוב ל-FirebaseVisionImage.fromMediaImage()
:Kotlin+KTX
val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
Java
FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
- כדי ליצור אובייקט
FirebaseVisionImage
מ-URI של קובץ, העבר את ההקשר של האפליקציה ו-URI של הקובץ ל-FirebaseVisionImage.fromFilePath()
. זה שימושי כאשר אתה משתמש בכוונהACTION_GET_CONTENT
כדי לבקש מהמשתמש לבחור תמונה מאפליקציית הגלריה שלו.Kotlin+KTX
val image: FirebaseVisionImage try { image = FirebaseVisionImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
Java
FirebaseVisionImage image; try { image = FirebaseVisionImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
- כדי ליצור אובייקט
FirebaseVisionImage
מ-ByteBuffer
או מערך בתים, חשב תחילה את סיבוב התמונה כמתואר לעיל עבור קלטmedia.Image
.לאחר מכן, צור אובייקט
FirebaseVisionImageMetadata
המכיל את הגובה, הרוחב, פורמט קידוד הצבע והסיבוב של התמונה:Kotlin+KTX
val metadata = FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build()
Java
FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build();
השתמש במאגר או במערך, ובאובייקט המטא נתונים, כדי ליצור אובייקט
FirebaseVisionImage
:Kotlin+KTX
val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata) // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
Java
FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata); // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
- כדי ליצור אובייקט
FirebaseVisionImage
מאובייקטBitmap
:התמונה המיוצגת על ידי אובייקטKotlin+KTX
val image = FirebaseVisionImage.fromBitmap(bitmap)
Java
FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
Bitmap
חייבת להיות זקופה, ללא צורך בסיבוב נוסף.
קבל מופע של
FirebaseVisionTextRecognizer
.Kotlin+KTX
val detector = FirebaseVision.getInstance().cloudTextRecognizer // Or, to change the default settings: // val detector = FirebaseVision.getInstance().getCloudTextRecognizer(options)
// Or, to provide language hints to assist with language detection: // See https://cloud.google.com/vision/docs/languages for supported languages val options = FirebaseVisionCloudTextRecognizerOptions.Builder() .setLanguageHints(listOf("en", "hi")) .build()
Java
FirebaseVisionTextRecognizer detector = FirebaseVision.getInstance() .getCloudTextRecognizer(); // Or, to change the default settings: // FirebaseVisionTextRecognizer detector = FirebaseVision.getInstance() // .getCloudTextRecognizer(options);
// Or, to provide language hints to assist with language detection: // See https://cloud.google.com/vision/docs/languages for supported languages FirebaseVisionCloudTextRecognizerOptions options = new FirebaseVisionCloudTextRecognizerOptions.Builder() .setLanguageHints(Arrays.asList("en", "hi")) .build();
לבסוף, העבירו את התמונה לשיטת
processImage
:Kotlin+KTX
val result = detector.processImage(image) .addOnSuccessListener { firebaseVisionText -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
Java
Task<FirebaseVisionText> result = detector.processImage(image) .addOnSuccessListener(new OnSuccessListener<FirebaseVisionText>() { @Override public void onSuccess(FirebaseVisionText firebaseVisionText) { // Task completed successfully // ... } }) .addOnFailureListener( new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
2. חלץ טקסט מגושים של טקסט מוכר
אם פעולת זיהוי הטקסט תצליח, אובייקטFirebaseVisionText
יועבר למאזין ההצלחה. אובייקט FirebaseVisionText
מכיל את הטקסט המלא המזוהה בתמונה ואפס או יותר אובייקטים TextBlock
. כל TextBlock
מייצג בלוק מלבני של טקסט, המכיל אפס או יותר אובייקטי Line
. כל אובייקט Line
מכיל אפס או יותר Element
אלמנט, המייצגים מילים וישויות דמויות מילה (תאריכים, מספרים וכן הלאה).
עבור כל אובייקט TextBlock
, Line
ו- Element
, אתה יכול לזהות את הטקסט באזור ואת הקואורדינטות התוחמות של האזור.
לדוגמה:
Kotlin+KTX
val resultText = result.text for (block in result.textBlocks) { val blockText = block.text val blockConfidence = block.confidence val blockLanguages = block.recognizedLanguages val blockCornerPoints = block.cornerPoints val blockFrame = block.boundingBox for (line in block.lines) { val lineText = line.text val lineConfidence = line.confidence val lineLanguages = line.recognizedLanguages val lineCornerPoints = line.cornerPoints val lineFrame = line.boundingBox for (element in line.elements) { val elementText = element.text val elementConfidence = element.confidence val elementLanguages = element.recognizedLanguages val elementCornerPoints = element.cornerPoints val elementFrame = element.boundingBox } } }
Java
String resultText = result.getText(); for (FirebaseVisionText.TextBlock block: result.getTextBlocks()) { String blockText = block.getText(); Float blockConfidence = block.getConfidence(); List<RecognizedLanguage> blockLanguages = block.getRecognizedLanguages(); Point[] blockCornerPoints = block.getCornerPoints(); Rect blockFrame = block.getBoundingBox(); for (FirebaseVisionText.Line line: block.getLines()) { String lineText = line.getText(); Float lineConfidence = line.getConfidence(); List<RecognizedLanguage> lineLanguages = line.getRecognizedLanguages(); Point[] lineCornerPoints = line.getCornerPoints(); Rect lineFrame = line.getBoundingBox(); for (FirebaseVisionText.Element element: line.getElements()) { String elementText = element.getText(); Float elementConfidence = element.getConfidence(); List<RecognizedLanguage> elementLanguages = element.getRecognizedLanguages(); Point[] elementCornerPoints = element.getCornerPoints(); Rect elementFrame = element.getBoundingBox(); } } }
הצעדים הבאים
- לפני שאתה פורס לייצור אפליקציה שמשתמשת ב-Cloud API, עליך לנקוט כמה צעדים נוספים כדי למנוע ולהפחית את ההשפעה של גישה לא מורשית ל-API .
זיהוי טקסט בתמונות של מסמכים
כדי לזהות את הטקסט של מסמך, הגדר והפעל את מזהה הטקסט של המסמך כמתואר להלן.
ה-API לזיהוי טקסט של מסמכים, המתואר להלן, מספק ממשק שנועד להיות נוח יותר לעבודה עם תמונות של מסמכים. עם זאת, אם אתה מעדיף את הממשק המסופק על ידי FirebaseVisionTextRecognizer
API, אתה יכול להשתמש בו במקום לסרוק מסמכים על ידי הגדרת מזהה הטקסט בענן לשימוש במודל הטקסט הצפוף .
כדי להשתמש ב-API לזיהוי טקסט של מסמכים:
1. הפעל את מזהה הטקסט
כדי לזהות טקסט בתמונה, צור אובייקטFirebaseVisionImage
מ- Bitmap
, media.Image
, ByteBuffer
, מערך בתים או קובץ במכשיר. לאחר מכן, העבר את אובייקט FirebaseVisionImage
לשיטת processImage
של FirebaseVisionDocumentTextRecognizer
.צור אובייקט
FirebaseVisionImage
מהתמונה שלך.כדי ליצור אובייקט
FirebaseVisionImage
מאובייקטmedia.Image
, כגון בעת לכידת תמונה ממצלמה של מכשיר, העבר את אובייקטmedia.Image
וסיבוב התמונה ל-FirebaseVisionImage.fromMediaImage()
.אם אתה משתמש בספריית CameraX , המחלקות
OnImageCapturedListener
ו-ImageAnalysis.Analyzer
מחשבות עבורך את ערך הסיבוב, אז אתה רק צריך להמיר את הסיבוב לאחד מקבועיROTATION_
של Firebase ML לפני שתקראFirebaseVisionImage.fromMediaImage()
:Kotlin+KTX
private class YourImageAnalyzer : ImageAnalysis.Analyzer { private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) { 0 -> FirebaseVisionImageMetadata.ROTATION_0 90 -> FirebaseVisionImageMetadata.ROTATION_90 180 -> FirebaseVisionImageMetadata.ROTATION_180 270 -> FirebaseVisionImageMetadata.ROTATION_270 else -> throw Exception("Rotation must be 0, 90, 180, or 270.") } override fun analyze(imageProxy: ImageProxy?, degrees: Int) { val mediaImage = imageProxy?.image val imageRotation = degreesToFirebaseRotation(degrees) if (mediaImage != null) { val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation) // Pass image to an ML Vision API // ... } } }
Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { private int degreesToFirebaseRotation(int degrees) { switch (degrees) { case 0: return FirebaseVisionImageMetadata.ROTATION_0; case 90: return FirebaseVisionImageMetadata.ROTATION_90; case 180: return FirebaseVisionImageMetadata.ROTATION_180; case 270: return FirebaseVisionImageMetadata.ROTATION_270; default: throw new IllegalArgumentException( "Rotation must be 0, 90, 180, or 270."); } } @Override public void analyze(ImageProxy imageProxy, int degrees) { if (imageProxy == null || imageProxy.getImage() == null) { return; } Image mediaImage = imageProxy.getImage(); int rotation = degreesToFirebaseRotation(degrees); FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation); // Pass image to an ML Vision API // ... } }
אם אינכם משתמשים בספריית מצלמה שנותנת לכם את סיבוב התמונה, תוכלו לחשב זאת מסיבוב המכשיר ומכיוון חיישן המצלמה במכשיר:
Kotlin+KTX
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 90) ORIENTATIONS.append(Surface.ROTATION_90, 0) ORIENTATIONS.append(Surface.ROTATION_180, 270) ORIENTATIONS.append(Surface.ROTATION_270, 180) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360 // Return the corresponding FirebaseVisionImageMetadata rotation value. val result: Int when (rotationCompensation) { 0 -> result = FirebaseVisionImageMetadata.ROTATION_0 90 -> result = FirebaseVisionImageMetadata.ROTATION_90 180 -> result = FirebaseVisionImageMetadata.ROTATION_180 270 -> result = FirebaseVisionImageMetadata.ROTATION_270 else -> { result = FirebaseVisionImageMetadata.ROTATION_0 Log.e(TAG, "Bad rotation value: $rotationCompensation") } } return result }
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 90); ORIENTATIONS.append(Surface.ROTATION_90, 0); ORIENTATIONS.append(Surface.ROTATION_180, 270); ORIENTATIONS.append(Surface.ROTATION_270, 180); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, Context context) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360; // Return the corresponding FirebaseVisionImageMetadata rotation value. int result; switch (rotationCompensation) { case 0: result = FirebaseVisionImageMetadata.ROTATION_0; break; case 90: result = FirebaseVisionImageMetadata.ROTATION_90; break; case 180: result = FirebaseVisionImageMetadata.ROTATION_180; break; case 270: result = FirebaseVisionImageMetadata.ROTATION_270; break; default: result = FirebaseVisionImageMetadata.ROTATION_0; Log.e(TAG, "Bad rotation value: " + rotationCompensation); } return result; }
לאחר מכן, העבר את אובייקט
media.Image
ואת ערך הסיבוב ל-FirebaseVisionImage.fromMediaImage()
:Kotlin+KTX
val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
Java
FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
- כדי ליצור אובייקט
FirebaseVisionImage
מ-URI של קובץ, העבר את ההקשר של האפליקציה ו-URI של הקובץ ל-FirebaseVisionImage.fromFilePath()
. זה שימושי כאשר אתה משתמש בכוונהACTION_GET_CONTENT
כדי לבקש מהמשתמש לבחור תמונה מאפליקציית הגלריה שלו.Kotlin+KTX
val image: FirebaseVisionImage try { image = FirebaseVisionImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
Java
FirebaseVisionImage image; try { image = FirebaseVisionImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
- כדי ליצור אובייקט
FirebaseVisionImage
מ-ByteBuffer
או מערך בתים, חשב תחילה את סיבוב התמונה כמתואר לעיל עבור קלטmedia.Image
.לאחר מכן, צור אובייקט
FirebaseVisionImageMetadata
המכיל את הגובה, הרוחב, פורמט קידוד הצבע והסיבוב של התמונה:Kotlin+KTX
val metadata = FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build()
Java
FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build();
השתמש במאגר או במערך, ובאובייקט המטא נתונים, כדי ליצור אובייקט
FirebaseVisionImage
:Kotlin+KTX
val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata) // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
Java
FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata); // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
- כדי ליצור אובייקט
FirebaseVisionImage
מאובייקטBitmap
:התמונה המיוצגת על ידי אובייקטKotlin+KTX
val image = FirebaseVisionImage.fromBitmap(bitmap)
Java
FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
Bitmap
חייבת להיות זקופה, ללא צורך בסיבוב נוסף.
קבל מופע של
FirebaseVisionDocumentTextRecognizer
:Kotlin+KTX
val detector = FirebaseVision.getInstance() .cloudDocumentTextRecognizer
// Or, to provide language hints to assist with language detection: // See https://cloud.google.com/vision/docs/languages for supported languages val options = FirebaseVisionCloudDocumentRecognizerOptions.Builder() .setLanguageHints(listOf("en", "hi")) .build() val detector = FirebaseVision.getInstance() .getCloudDocumentTextRecognizer(options)
Java
FirebaseVisionDocumentTextRecognizer detector = FirebaseVision.getInstance() .getCloudDocumentTextRecognizer();
// Or, to provide language hints to assist with language detection: // See https://cloud.google.com/vision/docs/languages for supported languages FirebaseVisionCloudDocumentRecognizerOptions options = new FirebaseVisionCloudDocumentRecognizerOptions.Builder() .setLanguageHints(Arrays.asList("en", "hi")) .build(); FirebaseVisionDocumentTextRecognizer detector = FirebaseVision.getInstance() .getCloudDocumentTextRecognizer(options);
לבסוף, העבירו את התמונה לשיטת
processImage
:Kotlin+KTX
detector.processImage(myImage) .addOnSuccessListener { firebaseVisionDocumentText -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
Java
detector.processImage(myImage) .addOnSuccessListener(new OnSuccessListener<FirebaseVisionDocumentText>() { @Override public void onSuccess(FirebaseVisionDocumentText result) { // Task completed successfully // ... } }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
2. חלץ טקסט מגושים של טקסט מוכר
אם פעולת זיהוי הטקסט תצליח, היא תחזיר אובייקט FirebaseVisionDocumentText
. אובייקט FirebaseVisionDocumentText
מכיל את הטקסט המלא המוכר בתמונה והיררכיה של אובייקטים המשקפים את המבנה של המסמך המוכר:
-
FirebaseVisionDocumentText.Block
-
FirebaseVisionDocumentText.Paragraph
-
FirebaseVisionDocumentText.Word
-
FirebaseVisionDocumentText.Symbol
עבור כל אובייקט Block
, Paragraph
, Word
Symbol
, אתה יכול לזהות את הטקסט באזור ואת הקואורדינטות התוחמות של האזור.
לדוגמה:
Kotlin+KTX
val resultText = result.text for (block in result.blocks) { val blockText = block.text val blockConfidence = block.confidence val blockRecognizedLanguages = block.recognizedLanguages val blockFrame = block.boundingBox for (paragraph in block.paragraphs) { val paragraphText = paragraph.text val paragraphConfidence = paragraph.confidence val paragraphRecognizedLanguages = paragraph.recognizedLanguages val paragraphFrame = paragraph.boundingBox for (word in paragraph.words) { val wordText = word.text val wordConfidence = word.confidence val wordRecognizedLanguages = word.recognizedLanguages val wordFrame = word.boundingBox for (symbol in word.symbols) { val symbolText = symbol.text val symbolConfidence = symbol.confidence val symbolRecognizedLanguages = symbol.recognizedLanguages val symbolFrame = symbol.boundingBox } } } }
Java
String resultText = result.getText(); for (FirebaseVisionDocumentText.Block block: result.getBlocks()) { String blockText = block.getText(); Float blockConfidence = block.getConfidence(); List<RecognizedLanguage> blockRecognizedLanguages = block.getRecognizedLanguages(); Rect blockFrame = block.getBoundingBox(); for (FirebaseVisionDocumentText.Paragraph paragraph: block.getParagraphs()) { String paragraphText = paragraph.getText(); Float paragraphConfidence = paragraph.getConfidence(); List<RecognizedLanguage> paragraphRecognizedLanguages = paragraph.getRecognizedLanguages(); Rect paragraphFrame = paragraph.getBoundingBox(); for (FirebaseVisionDocumentText.Word word: paragraph.getWords()) { String wordText = word.getText(); Float wordConfidence = word.getConfidence(); List<RecognizedLanguage> wordRecognizedLanguages = word.getRecognizedLanguages(); Rect wordFrame = word.getBoundingBox(); for (FirebaseVisionDocumentText.Symbol symbol: word.getSymbols()) { String symbolText = symbol.getText(); Float symbolConfidence = symbol.getConfidence(); List<RecognizedLanguage> symbolRecognizedLanguages = symbol.getRecognizedLanguages(); Rect symbolFrame = symbol.getBoundingBox(); } } } }
הצעדים הבאים
- לפני שאתה פורס לייצור אפליקציה שמשתמשת ב-Cloud API, עליך לנקוט כמה צעדים נוספים כדי למנוע ולהפחית את ההשפעה של גישה לא מורשית ל-API .