Pour appeler une API Google Cloud depuis votre application, vous devez créer une API REST intermédiaire qui gère l'autorisation et protège les valeurs secrètes telles que les clés API. Vous devez ensuite écrire du code dans votre application mobile pour vous authentifier et communiquer avec ce service intermédiaire.
Une façon de créer cette API REST consiste à utiliser Firebase Authentication and Functions, qui vous offre une passerelle gérée et sans serveur vers les API Google Cloud qui gère l'authentification et peut être appelée depuis votre application mobile avec des SDK prédéfinis.
Ce guide explique comment utiliser cette technique pour appeler l'API Cloud Vision à partir de votre application. Cette méthode permettra à tous les utilisateurs authentifiés d'accéder aux services facturés de Cloud Vision via votre projet Cloud. Vérifiez donc si ce mécanisme d'authentification est suffisant pour votre cas d'utilisation avant de continuer.
Avant que tu commences
Configurez votre projet
- Si vous ne l'avez pas déjà fait, ajoutez Firebase à votre projet Android .
Si vous n'avez pas encore activé les API basées sur le cloud pour votre projet, faites-le maintenant :
- Ouvrez la page API Firebase ML de la console Firebase.
Si vous n'avez pas encore mis à niveau votre projet vers le plan tarifaire Blaze, cliquez sur Mettre à niveau pour le faire. (Vous serez invité à mettre à niveau uniquement si votre projet n'est pas sur le plan Blaze.)
Seuls les projets de niveau Blaze peuvent utiliser des API basées sur le cloud.
- Si les API basées sur le cloud ne sont pas déjà activées, cliquez sur Activer les API basées sur le cloud .
- Configurez vos clés d'API Firebase existantes pour interdire l'accès à l'API Cloud Vision :
- Ouvrez la page Identifiants de la console Cloud.
- Pour chaque clé d'API de la liste, ouvrez la vue de modification et, dans la section Key Restrictions, ajoutez toutes les API disponibles à l' exception de l'API Cloud Vision à la liste.
Déployer la fonction appelable
Ensuite, déployez la fonction Cloud que vous utiliserez pour relier votre application et l'API Cloud Vision. Le référentiel functions-samples
contient un exemple que vous pouvez utiliser.
Par défaut, l'accès à l'API Cloud Vision via cette fonction n'autorisera que les utilisateurs authentifiés de votre application à accéder à l'API Cloud Vision. Vous pouvez modifier la fonction pour différentes exigences.
Pour déployer la fonction :
- Clonez ou téléchargez le référentiel functions-samples et accédez au répertoire
vision-annotate-image
:git clone https://github.com/firebase/functions-samples
cd vision-annotate-image
- Installer les dépendances :
cd functions
npm install
cd ..
- Si vous n'avez pas la CLI Firebase, installez-la .
- Initialisez un projet Firebase dans le répertoire
vision-annotate-image
. Lorsque vous y êtes invité, sélectionnez votre projet dans la liste.firebase init
- Déployez la fonction :
firebase deploy --only functions:annotateImage
Ajouter Firebase Auth à votre application
La fonction appelable déployée ci-dessus rejettera toute demande d'utilisateurs non authentifiés de votre application. Si vous ne l'avez pas déjà fait, vous devrez ajouter Firebase Auth à votre application.
Ajouter les dépendances nécessaires à votre application
implementation 'com.google.firebase:firebase-functions:20.2.2' implementation 'com.google.code.gson:gson:2.8.6'
Vous êtes maintenant prêt à commencer à reconnaître du texte dans des images.
1. Préparez l'image d'entrée
Pour appeler Cloud Vision, l'image doit être au format d'une chaîne encodée en base64. Pour traiter une image à partir d'un URI de fichier enregistré :- Obtenez l'image en tant qu'objet
Bitmap
:Kotlin+KTX
var bitmap: Bitmap = MediaStore.Images.Media.getBitmap(contentResolver, uri)
Java
Bitmap bitmap = MediaStore.Images.Media.getBitmap(getContentResolver(), uri);
- Facultativement, réduisez l'échelle de l'image pour économiser de la bande passante. Consultez les tailles d'image recommandées par Cloud Vision.
Kotlin+KTX
private fun scaleBitmapDown(bitmap: Bitmap, maxDimension: Int): Bitmap { val originalWidth = bitmap.width val originalHeight = bitmap.height var resizedWidth = maxDimension var resizedHeight = maxDimension if (originalHeight > originalWidth) { resizedHeight = maxDimension resizedWidth = (resizedHeight * originalWidth.toFloat() / originalHeight.toFloat()).toInt() } else if (originalWidth > originalHeight) { resizedWidth = maxDimension resizedHeight = (resizedWidth * originalHeight.toFloat() / originalWidth.toFloat()).toInt() } else if (originalHeight == originalWidth) { resizedHeight = maxDimension resizedWidth = maxDimension } return Bitmap.createScaledBitmap(bitmap, resizedWidth, resizedHeight, false) }
Java
private Bitmap scaleBitmapDown(Bitmap bitmap, int maxDimension) { int originalWidth = bitmap.getWidth(); int originalHeight = bitmap.getHeight(); int resizedWidth = maxDimension; int resizedHeight = maxDimension; if (originalHeight > originalWidth) { resizedHeight = maxDimension; resizedWidth = (int) (resizedHeight * (float) originalWidth / (float) originalHeight); } else if (originalWidth > originalHeight) { resizedWidth = maxDimension; resizedHeight = (int) (resizedWidth * (float) originalHeight / (float) originalWidth); } else if (originalHeight == originalWidth) { resizedHeight = maxDimension; resizedWidth = maxDimension; } return Bitmap.createScaledBitmap(bitmap, resizedWidth, resizedHeight, false); }
Kotlin+KTX
// Scale down bitmap size bitmap = scaleBitmapDown(bitmap, 640)
Java
// Scale down bitmap size bitmap = scaleBitmapDown(bitmap, 640);
- Convertissez l'objet bitmap en une chaîne encodée en base64 :
Kotlin+KTX
// Convert bitmap to base64 encoded string val byteArrayOutputStream = ByteArrayOutputStream() bitmap.compress(Bitmap.CompressFormat.JPEG, 100, byteArrayOutputStream) val imageBytes: ByteArray = byteArrayOutputStream.toByteArray() val base64encoded = Base64.encodeToString(imageBytes, Base64.NO_WRAP)
Java
// Convert bitmap to base64 encoded string ByteArrayOutputStream byteArrayOutputStream = new ByteArrayOutputStream(); bitmap.compress(Bitmap.CompressFormat.JPEG, 100, byteArrayOutputStream); byte[] imageBytes = byteArrayOutputStream.toByteArray(); String base64encoded = Base64.encodeToString(imageBytes, Base64.NO_WRAP);
L'image représentée par l'objet
Bitmap
doit être droite, sans rotation supplémentaire requise.2. Appelez la fonction appelable pour reconnaître le texte
Pour reconnaître du texte dans une image, appelez la fonction appelable en transmettant une requête JSON Cloud Vision .
Tout d'abord, initialisez une instance de Cloud Functions :
Kotlin+KTX
private lateinit var functions: FirebaseFunctions // ... functions = Firebase.functions
Java
private FirebaseFunctions mFunctions; // ... mFunctions = FirebaseFunctions.getInstance();
Définissez une méthode pour invoquer la fonction :
Kotlin+KTX
private fun annotateImage(requestJson: String): Task<JsonElement> { return functions .getHttpsCallable("annotateImage") .call(requestJson) .continueWith { task -> // This continuation runs on either success or failure, but if the task // has failed then result will throw an Exception which will be // propagated down. val result = task.result?.data JsonParser.parseString(Gson().toJson(result)) } }
Java
private Task<JsonElement> annotateImage(String requestJson) { return mFunctions .getHttpsCallable("annotateImage") .call(requestJson) .continueWith(new Continuation<HttpsCallableResult, JsonElement>() { @Override public JsonElement then(@NonNull Task<HttpsCallableResult> task) { // This continuation runs on either success or failure, but if the task // has failed then getResult() will throw an Exception which will be // propagated down. return JsonParser.parseString(new Gson().toJson(task.getResult().getData())); } }); }
Créez la requête JSON. L'API Cloud Vision prend en charge deux types de détection de texte :
TEXT_DETECTION
etDOCUMENT_TEXT_DETECTION
. Consultez les documents Cloud Vision OCR pour connaître la différence entre les deux cas d'utilisation.Kotlin+KTX
// Create json request to cloud vision val request = JsonObject() // Add image to request val image = JsonObject() image.add("content", JsonPrimitive(base64encoded)) request.add("image", image) //Add features to the request val feature = JsonObject() feature.add("type", JsonPrimitive("TEXT_DETECTION")) // Alternatively, for DOCUMENT_TEXT_DETECTION: // feature.add("type", JsonPrimitive("DOCUMENT_TEXT_DETECTION")) val features = JsonArray() features.add(feature) request.add("features", features)
Java
// Create json request to cloud vision JsonObject request = new JsonObject(); // Add image to request JsonObject image = new JsonObject(); image.add("content", new JsonPrimitive(base64encoded)); request.add("image", image); //Add features to the request JsonObject feature = new JsonObject(); feature.add("type", new JsonPrimitive("TEXT_DETECTION")); // Alternatively, for DOCUMENT_TEXT_DETECTION: //feature.add("type", new JsonPrimitive("DOCUMENT_TEXT_DETECTION")); JsonArray features = new JsonArray(); features.add(feature); request.add("features", features);
En option, fournissez des conseils de langue pour faciliter la détection de la langue (voir langues prises en charge ) :
Kotlin+KTX
val imageContext = JsonObject() val languageHints = JsonArray() languageHints.add("en") imageContext.add("languageHints", languageHints) request.add("imageContext", imageContext)
Java
JsonObject imageContext = new JsonObject(); JsonArray languageHints = new JsonArray(); languageHints.add("en"); imageContext.add("languageHints", languageHints); request.add("imageContext", imageContext);
Enfin, invoquez la fonction :
Kotlin+KTX
annotateImage(request.toString()) .addOnCompleteListener { task -> if (!task.isSuccessful) { // Task failed with an exception // ... } else { // Task completed successfully // ... } }
Java
annotateImage(request.toString()) .addOnCompleteListener(new OnCompleteListener<JsonElement>() { @Override public void onComplete(@NonNull Task<JsonElement> task) { if (!task.isSuccessful()) { // Task failed with an exception // ... } else { // Task completed successfully // ... } } });
3. Extraire du texte à partir de blocs de texte reconnu
Si l'opération de reconnaissance de texte réussit, une réponse JSON de BatchAnnotateImagesResponse sera renvoyée dans le résultat de la tâche. Les annotations de texte se trouvent dans l'objetfullTextAnnotation
. Vous pouvez obtenir le texte reconnu sous forme de chaîne dans le champ de text
. Par example:
Kotlin+KTX
val annotation = task.result!!.asJsonArray[0].asJsonObject["fullTextAnnotation"].asJsonObject
System.out.format("%nComplete annotation:")
System.out.format("%n%s", annotation["text"].asString)
Java
JsonObject annotation = task.getResult().getAsJsonArray().get(0).getAsJsonObject().get("fullTextAnnotation").getAsJsonObject();
System.out.format("%nComplete annotation:%n");
System.out.format("%s%n", annotation.get("text").getAsString());
Vous pouvez également obtenir des informations spécifiques aux régions de l'image. Pour chaque block
, paragraph
, word
et symbol
, vous pouvez obtenir le texte reconnu dans la région et les coordonnées de délimitation de la région. Par example:
Kotlin+KTX
for (page in annotation["pages"].asJsonArray) {
var pageText = ""
for (block in page.asJsonObject["blocks"].asJsonArray) {
var blockText = ""
for (para in block.asJsonObject["paragraphs"].asJsonArray) {
var paraText = ""
for (word in para.asJsonObject["words"].asJsonArray) {
var wordText = ""
for (symbol in word.asJsonObject["symbols"].asJsonArray) {
wordText += symbol.asJsonObject["text"].asString
System.out.format("Symbol text: %s (confidence: %f)%n",
symbol.asJsonObject["text"].asString, symbol.asJsonObject["confidence"].asFloat)
}
System.out.format("Word text: %s (confidence: %f)%n%n", wordText,
word.asJsonObject["confidence"].asFloat)
System.out.format("Word bounding box: %s%n", word.asJsonObject["boundingBox"])
paraText = String.format("%s%s ", paraText, wordText)
}
System.out.format("%nParagraph: %n%s%n", paraText)
System.out.format("Paragraph bounding box: %s%n", para.asJsonObject["boundingBox"])
System.out.format("Paragraph Confidence: %f%n", para.asJsonObject["confidence"].asFloat)
blockText += paraText
}
pageText += blockText
}
}
Java
for (JsonElement page : annotation.get("pages").getAsJsonArray()) {
StringBuilder pageText = new StringBuilder();
for (JsonElement block : page.getAsJsonObject().get("blocks").getAsJsonArray()) {
StringBuilder blockText = new StringBuilder();
for (JsonElement para : block.getAsJsonObject().get("paragraphs").getAsJsonArray()) {
StringBuilder paraText = new StringBuilder();
for (JsonElement word : para.getAsJsonObject().get("words").getAsJsonArray()) {
StringBuilder wordText = new StringBuilder();
for (JsonElement symbol : word.getAsJsonObject().get("symbols").getAsJsonArray()) {
wordText.append(symbol.getAsJsonObject().get("text").getAsString());
System.out.format("Symbol text: %s (confidence: %f)%n", symbol.getAsJsonObject().get("text").getAsString(), symbol.getAsJsonObject().get("confidence").getAsFloat());
}
System.out.format("Word text: %s (confidence: %f)%n%n", wordText.toString(), word.getAsJsonObject().get("confidence").getAsFloat());
System.out.format("Word bounding box: %s%n", word.getAsJsonObject().get("boundingBox"));
paraText.append(wordText.toString()).append(" ");
}
System.out.format("%nParagraph:%n%s%n", paraText);
System.out.format("Paragraph bounding box: %s%n", para.getAsJsonObject().get("boundingBox"));
System.out.format("Paragraph Confidence: %f%n", para.getAsJsonObject().get("confidence").getAsFloat());
blockText.append(paraText);
}
pageText.append(blockText);
}
}