[[["易于理解","easyToUnderstand","thumb-up"],["解决了我的问题","solvedMyProblem","thumb-up"],["其他","otherUp","thumb-up"]],[["没有我需要的信息","missingTheInformationINeed","thumb-down"],["太复杂/步骤太多","tooComplicatedTooManySteps","thumb-down"],["内容需要更新","outOfDate","thumb-down"],["翻译问题","translationIssue","thumb-down"],["示例/代码问题","samplesCodeIssue","thumb-down"],["其他","otherDown","thumb-down"]],["最后更新时间 (UTC):2025-09-06。"],[],[],null,["\u003cbr /\u003e\n\nTry these codelabs to learn hands-on how Firebase can help you use TensorFlow\nLite models more easily and effectively.\n\nDigit classification (introduction to model deployment)\n\nLearn how to use Firebase's model deployment features by building an app that\nrecognizes handwritten digits. Deploy TensorFlow Lite models with\nFirebase ML, analyze model performance with Performance Monitoring, and test model\neffectiveness with A/B Testing.\n\n[iOS+](/codelabs/digitclassifier-ios)\n[Android](/codelabs/digitclassifier-android)\n\nSentiment analysis\n\nIn this codelab, you use your own training data to fine-tune an existing text\nclassification model that identifies the sentiment expressed in a passage of\ntext. Then, you deploy the model using Firebase ML and compare the accuracy\nof the old and new models with A/B Testing.\n\n[iOS+](/codelabs/textclassification-iOS)\n[Android](/codelabs/textclassification-android)\n\nContent recommendation\n\nRecommendation engines let you personalize experiences to individual users,\npresenting them with more relevant and engaging content. Rather than building\nout a complex pipeline to power this feature, this codelab shows how you can\nimplement a content recommendation engine for an app by training and deploying\nan on-device ML model.\n\n[iOS+](/codelabs/contentrecommendation-ios)\n[Android](/codelabs/contentrecommendation-android)"]]