После обучения собственной модели с помощью AutoML Vision Edge вы можете использовать ее в своем приложении для обнаружения объектов на изображениях.
Существует два способа интеграции моделей, обученных с помощью AutoML Vision Edge. Вы можете связать модель, скопировав файлы модели в свой проект Xcode, или вы можете динамически загрузить ее из Firebase.
Варианты комплектации модели | |
---|---|
Включено в ваше приложение |
|
Размещено на Firebase |
|
Прежде чем начать
Если вы хотите загрузить модель , обязательно добавьте Firebase в свой проект Apple , если вы еще этого не сделали. Это не требуется при объединении модели.
Включите библиотеки TensorFlow и Firebase в свой подфайл:
Для объединения модели с вашим приложением:
Быстрый
pod 'TensorFlowLiteSwift'
Цель-C
pod 'TensorFlowLiteObjC'
Для динамической загрузки модели из Firebase добавьте зависимость
Firebase/MLModelInterpreter
:Быстрый
pod 'TensorFlowLiteSwift' pod 'Firebase/MLModelInterpreter'
Цель-C
pod 'TensorFlowLiteObjC' pod 'Firebase/MLModelInterpreter'
После установки или обновления модулей вашего проекта откройте проект Xcode, используя его
.xcworkspace
.
1. Загрузите модель
Настройте источник локальной модели
Чтобы связать модель с вашим приложением, скопируйте файл модели и меток в свой проект Xcode, не забывая при этом выбирать «Создать ссылки на папки» . Файл модели и метки будут включены в пакет приложения.
Также обратите внимание на файл tflite_metadata.json
, созданный вместе с моделью. Вам нужны два значения:
- Входные размеры модели. По умолчанию это 320x320.
- Максимальные обнаружения модели. По умолчанию это 40.
Настройте источник модели, размещенный в Firebase
Чтобы использовать удаленно размещенную модель, создайте объект CustomRemoteModel
, указав имя, которое вы присвоили модели при ее публикации:
Быстрый
let remoteModel = CustomRemoteModel(
name: "your_remote_model" // The name you assigned in the Google Cloud console.
)
Цель-C
FIRCustomRemoteModel *remoteModel = [[FIRCustomRemoteModel alloc]
initWithName:@"your_remote_model"];
Затем запустите задачу загрузки модели, указав условия, при которых вы хотите разрешить загрузку. Если модели нет на устройстве или доступна более новая версия модели, задача асинхронно загрузит модель из Firebase:
Быстрый
let downloadProgress = ModelManager.modelManager().download(
remoteModel,
conditions: ModelDownloadConditions(
allowsCellularAccess: true,
allowsBackgroundDownloading: true
)
)
Цель-C
FIRModelDownloadConditions *conditions =
[[FIRModelDownloadConditions alloc] initWithAllowsCellularAccess:YES
allowsBackgroundDownloading:YES];
NSProgress *progress = [[FIRModelManager modelManager] downloadModel:remoteModel
conditions:conditions];
Многие приложения запускают задачу загрузки в своем коде инициализации, но вы можете сделать это в любой момент, прежде чем вам понадобится использовать модель.
Создайте детектор объектов из вашей модели
После настройки источников модели создайте объект Interpreter
TensorFlow Lite из одного из них.
Если у вас есть только локально связанная модель, просто создайте интерпретатор из файла модели:
Быстрый
guard let modelPath = Bundle.main.path(
forResource: "model",
ofType: "tflite"
) else {
print("Failed to load the model file.")
return true
}
let interpreter = try Interpreter(modelPath: modelPath)
try interpreter.allocateTensors()
Цель-C
NSString *modelPath = [[NSBundle mainBundle] pathForResource:@"model"
ofType:@"tflite"];
NSError *error;
TFLInterpreter *interpreter = [[TFLInterpreter alloc] initWithModelPath:modelPath
error:&error];
if (error != NULL) { return; }
[interpreter allocateTensorsWithError:&error];
if (error != NULL) { return; }
Если у вас есть удаленно размещенная модель, вам придется убедиться, что она загружена, прежде чем запускать ее. Вы можете проверить состояние задачи загрузки модели с помощью метода isModelDownloaded(remoteModel:)
менеджера моделей.
Хотя вам нужно подтвердить это только перед запуском интерпретатора, если у вас есть как удаленно размещенная модель, так и локально связанная модель, возможно, имеет смысл выполнить эту проверку при создании экземпляра Interpreter
: создайте интерпретатор из удаленной модели, если он скачано, а из локальной модели иначе.
Быстрый
var modelPath: String?
if ModelManager.modelManager().isModelDownloaded(remoteModel) {
ModelManager.modelManager().getLatestModelFilePath(remoteModel) { path, error in
guard error == nil else { return }
guard let path = path else { return }
modelPath = path
}
} else {
modelPath = Bundle.main.path(
forResource: "model",
ofType: "tflite"
)
}
guard modelPath != nil else { return }
let interpreter = try Interpreter(modelPath: modelPath)
try interpreter.allocateTensors()
Цель-C
__block NSString *modelPath;
if ([[FIRModelManager modelManager] isModelDownloaded:remoteModel]) {
[[FIRModelManager modelManager] getLatestModelFilePath:remoteModel
completion:^(NSString * _Nullable filePath,
NSError * _Nullable error) {
if (error != NULL) { return; }
if (filePath == NULL) { return; }
modelPath = filePath;
}];
} else {
modelPath = [[NSBundle mainBundle] pathForResource:@"model"
ofType:@"tflite"];
}
NSError *error;
TFLInterpreter *interpreter = [[TFLInterpreter alloc] initWithModelPath:modelPath
error:&error];
if (error != NULL) { return; }
[interpreter allocateTensorsWithError:&error];
if (error != NULL) { return; }
Если у вас есть только удаленно размещенная модель, вам следует отключить функции, связанные с моделью (например, сделать их серыми или скрыть часть пользовательского интерфейса), пока вы не подтвердите, что модель загружена.
Вы можете получить статус загрузки модели, присоединив наблюдателей к Центру уведомлений по умолчанию. Обязательно используйте слабую ссылку на self
в блоке наблюдателя, поскольку загрузка может занять некоторое время, а исходный объект может быть освобожден к моменту завершения загрузки. Например:
Быстрый
NotificationCenter.default.addObserver(
forName: .firebaseMLModelDownloadDidSucceed,
object: nil,
queue: nil
) { [weak self] notification in
guard let strongSelf = self,
let userInfo = notification.userInfo,
let model = userInfo[ModelDownloadUserInfoKey.remoteModel.rawValue]
as? RemoteModel,
model.name == "your_remote_model"
else { return }
// The model was downloaded and is available on the device
}
NotificationCenter.default.addObserver(
forName: .firebaseMLModelDownloadDidFail,
object: nil,
queue: nil
) { [weak self] notification in
guard let strongSelf = self,
let userInfo = notification.userInfo,
let model = userInfo[ModelDownloadUserInfoKey.remoteModel.rawValue]
as? RemoteModel
else { return }
let error = userInfo[ModelDownloadUserInfoKey.error.rawValue]
// ...
}
Цель-C
__weak typeof(self) weakSelf = self;
[NSNotificationCenter.defaultCenter
addObserverForName:FIRModelDownloadDidSucceedNotification
object:nil
queue:nil
usingBlock:^(NSNotification *_Nonnull note) {
if (weakSelf == nil | note.userInfo == nil) {
return;
}
__strong typeof(self) strongSelf = weakSelf;
FIRRemoteModel *model = note.userInfo[FIRModelDownloadUserInfoKeyRemoteModel];
if ([model.name isEqualToString:@"your_remote_model"]) {
// The model was downloaded and is available on the device
}
}];
[NSNotificationCenter.defaultCenter
addObserverForName:FIRModelDownloadDidFailNotification
object:nil
queue:nil
usingBlock:^(NSNotification *_Nonnull note) {
if (weakSelf == nil | note.userInfo == nil) {
return;
}
__strong typeof(self) strongSelf = weakSelf;
NSError *error = note.userInfo[FIRModelDownloadUserInfoKeyError];
}];
2. Подготовьте входное изображение
Далее вам необходимо подготовить изображения для интерпретатора TensorFlow Lite.
Обрежьте и масштабируйте изображение до входных размеров модели, как указано в файле
tflite_metadata.json
(по умолчанию 320x320 пикселей). Вы можете сделать это с помощью Core Image или сторонней библиотеки.Скопируйте данные изображения в
Data
(объектNSData
):Быстрый
guard let image: CGImage = // Your input image guard let context = CGContext( data: nil, width: image.width, height: image.height, bitsPerComponent: 8, bytesPerRow: image.width * 4, space: CGColorSpaceCreateDeviceRGB(), bitmapInfo: CGImageAlphaInfo.noneSkipFirst.rawValue ) else { return nil } context.draw(image, in: CGRect(x: 0, y: 0, width: image.width, height: image.height)) guard let imageData = context.data else { return nil } var inputData = Data() for row in 0 ..< 320 { // Model takes 320x320 pixel images as input for col in 0 ..< 320 { let offset = 4 * (col * context.width + row) // (Ignore offset 0, the unused alpha channel) var red = imageData.load(fromByteOffset: offset+1, as: UInt8.self) var green = imageData.load(fromByteOffset: offset+2, as: UInt8.self) var blue = imageData.load(fromByteOffset: offset+3, as: UInt8.self) inputData.append(&red, count: 1) inputData.append(&green, count: 1) inputData.append(&blue, count: 1) } }
Цель-C
CGImageRef image = // Your input image long imageWidth = CGImageGetWidth(image); long imageHeight = CGImageGetHeight(image); CGContextRef context = CGBitmapContextCreate(nil, imageWidth, imageHeight, 8, imageWidth * 4, CGColorSpaceCreateDeviceRGB(), kCGImageAlphaNoneSkipFirst); CGContextDrawImage(context, CGRectMake(0, 0, imageWidth, imageHeight), image); UInt8 *imageData = CGBitmapContextGetData(context); NSMutableData *inputData = [[NSMutableData alloc] initWithCapacity:0]; for (int row = 0; row < 300; row++) { for (int col = 0; col < 300; col++) { long offset = 4 * (row * imageWidth + col); // (Ignore offset 0, the unused alpha channel) UInt8 red = imageData[offset+1]; UInt8 green = imageData[offset+2]; UInt8 blue = imageData[offset+3]; [inputData appendBytes:&red length:1]; [inputData appendBytes:&green length:1]; [inputData appendBytes:&blue length:1]; } }
3. Запустите детектор объектов
Затем передайте подготовленный ввод интерпретатору:
Быстрый
try interpreter.copy(inputData, toInputAt: 0)
try interpreter.invoke()
Цель-C
TFLTensor *input = [interpreter inputTensorAtIndex:0 error:&error];
if (error != nil) { return; }
[input copyData:inputData error:&error];
if (error != nil) { return; }
[interpreter invokeWithError:&error];
if (error != nil) { return; }
4. Получить информацию об обнаруженных объектах
Если обнаружение объекта удалось, модель выдает на выходе три массива по 40 элементов (или независимо от того, что было указано в файле tflite_metadata.json
) каждый. Каждый элемент соответствует одному потенциальному объекту. Первый массив представляет собой массив ограничивающих рамок; второй — массив меток; и третий — массив доверительных значений. Чтобы получить выходные данные модели:
Быстрый
var output = try interpreter.output(at: 0)
let boundingBoxes =
UnsafeMutableBufferPointer<Float32>.allocate(capacity: 4 * 40)
output.data.copyBytes(to: boundingBoxes)
output = try interpreter.output(at: 1)
let labels =
UnsafeMutableBufferPointer<Float32>.allocate(capacity: 40)
output.data.copyBytes(to: labels)
output = try interpreter.output(at: 2)
let probabilities =
UnsafeMutableBufferPointer<Float32>.allocate(capacity: 40)
output.data.copyBytes(to: probabilities)
Цель-C
TFLTensor *output = [interpreter outputTensorAtIndex:0 error:&error];
if (error != nil) { return; }
NSData *boundingBoxes = [output dataWithError:&error];
if (error != nil) { return; }
output = [interpreter outputTensorAtIndex:1 error:&error];
if (error != nil) { return; }
NSData *labels = [output dataWithError:&error];
if (error != nil) { return; }
output = [interpreter outputTensorAtIndex:2 error:&error];
if (error != nil) { return; }
NSData *probabilities = [output dataWithError:&error];
if (error != nil) { return; }
Затем вы можете объединить выходные данные меток со словарем меток:
Быстрый
guard let labelPath = Bundle.main.path(
forResource: "dict",
ofType: "txt"
) else { return true }
let fileContents = try? String(contentsOfFile: labelPath)
guard let labelText = fileContents?.components(separatedBy: "\n") else { return true }
for i in 0 ..< 40 {
let top = boundingBoxes[0 * i]
let left = boundingBoxes[1 * i]
let bottom = boundingBoxes[2 * i]
let right = boundingBoxes[3 * i]
let labelIdx = Int(labels[i])
let label = labelText[labelIdx]
let confidence = probabilities[i]
if confidence > 0.66 {
print("Object found: \(label) (confidence: \(confidence))")
print(" Top-left: (\(left),\(top))")
print(" Bottom-right: (\(right),\(bottom))")
}
}
Цель-C
NSString *labelPath = [NSBundle.mainBundle pathForResource:@"dict"
ofType:@"txt"];
NSString *fileContents = [NSString stringWithContentsOfFile:labelPath
encoding:NSUTF8StringEncoding
error:&error];
if (error != nil || fileContents == NULL) { return; }
NSArray<NSString*> *labelText = [fileContents componentsSeparatedByString:@"\n"];
for (int i = 0; i < 40; i++) {
Float32 top, right, bottom, left;
Float32 labelIdx;
Float32 confidence;
[boundingBoxes getBytes:&top range:NSMakeRange(16 * i + 0, 4)];
[boundingBoxes getBytes:&left range:NSMakeRange(16 * i + 4, 4)];
[boundingBoxes getBytes:&bottom range:NSMakeRange(16 * i + 8, 4)];
[boundingBoxes getBytes:&right range:NSMakeRange(16 * i + 12, 4)];
[labels getBytes:&labelIdx range:NSMakeRange(4 * i, 4)];
[probabilities getBytes:&confidence range:NSMakeRange(4 * i, 4)];
if (confidence > 0.5f) {
NSString *label = labelText[(int)labelIdx];
NSLog(@"Object detected: %@", label);
NSLog(@" Confidence: %f", confidence);
NSLog(@" Top-left: (%f,%f)", left, top);
NSLog(@" Bottom-right: (%f,%f)", right, bottom);
}
}
Советы по повышению производительности в реальном времени
Если вы хотите маркировать изображения в приложении реального времени, следуйте этим рекомендациям для достижения наилучшей частоты кадров:
- Дроссель вызывает детектор. Если новый видеокадр становится доступным во время работы детектора, удалите этот кадр.
- Если вы используете выходные данные детектора для наложения графики на входное изображение, сначала получите результат, затем визуализируйте изображение и наложите его за один шаг. При этом вы выполняете рендеринг на поверхность дисплея только один раз для каждого входного кадра. Пример см. в классах PreviewOverlayView и FIRDetectionOverlayView в примере приложения-демонстратора.