تصنيف الصور باستخدام تعلُّم الآلة من Firebase على منصات Apple
تنظيم صفحاتك في مجموعات
يمكنك حفظ المحتوى وتصنيفه حسب إعداداتك المفضّلة.
يمكنك استخدام Firebase ML لتصنيف العناصر التي تم التعرّف عليها في صورة. يمكنك الاطّلاع على النظرة العامة للحصول على معلومات حول ميزات واجهة برمجة التطبيقات هذه.
قبل البدء
إذا لم يسبق لك إضافة Firebase إلى تطبيقك، يمكنك إجراء ذلك باتّباع
الخطوات الواردة في دليل بدء الاستخدام.
استخدِم أداة Swift Package Manager لتثبيت الملحقات التابعة لـ Firebase وإدارتها.
في Xcode، بعد فتح مشروع تطبيقك، انتقِل إلى ملف (File) > إضافة حِزم (Add Packages).
عندما يُطلب منك ذلك، أضِف مستودع حزمة تطوير البرامج (SDK) لمنصة Firebase على أجهزة Apple:
https://github.com/firebase/firebase-ios-sdk.git
اختَر مكتبة Firebase ML.
أضِف العلامة -ObjC إلى قسم علامات الرابط الأخرى في إعدادات الإصدار الخاص بالكائن المستهدف.
بعد الانتهاء، سيبدأ Xcode تلقائيًا في حلّ التبعيات وتنزيلها في الخلفية.
بعد ذلك، عليك إجراء بعض خطوات الإعداد داخل التطبيق:
إذا لم يسبق لك ترقية مشروعك إلى خطة أسعار Blaze بنظام الدفع حسب الاستخدام، انقر على ترقية لإجراء ذلك. (لن يُطلب منك الترقية إلا إذا لم يكن مشروعك مشتركًا في خطة أسعار Blaze).
يمكن للمشاريع التي تستخدم خطة التسعير Blaze فقط استخدام واجهات برمجة التطبيقات المستندة إلى السحابة الإلكترونية.
إذا لم تكن واجهات برمجة التطبيقات المستندة إلى السحابة الإلكترونية مفعّلة، انقر على
تفعيل واجهات برمجة التطبيقات المستندة إلى السحابة الإلكترونية.
أنت الآن جاهز لتصنيف الصور.
1. إعداد الصورة المصدر
أنشئ عنصر VisionImage باستخدام UIImage أو CMSampleBufferRef.
لاستخدام UIImage:
إذا لزم الأمر، عليك تدوير الصورة لضبط السمة imageOrientation على القيمة .up.
أنشئ كائن VisionImage باستخدام UIImage الذي تم تدويره بشكل صحيح. يجب عدم تحديد أي بيانات وصفية خاصة بالتدوير، بل استخدام القيمة التلقائية .topLeft.
letcameraPosition=AVCaptureDevice.Position.back// Set to the capture device you used.letmetadata=VisionImageMetadata()metadata.orientation=imageOrientation(deviceOrientation:UIDevice.current.orientation,cameraPosition:cameraPosition)
Objective-C
FIRVisionImageMetadata*metadata=[[FIRVisionImageMetadataalloc]init];AVCaptureDevicePositioncameraPosition=AVCaptureDevicePositionBack;// Set to the capture device you used.metadata.orientation=[selfimageOrientationFromDeviceOrientation:UIDevice.currentDevice.orientationcameraPosition:cameraPosition];
أنشئ عنصر VisionImage باستخدام عنصر
CMSampleBufferRef وبيانات الدوران الوصفية:
لتصنيف العناصر في صورة، مرِّر العنصر VisionImage إلى طريقة processImage() في VisionImageLabeler.
أولاً، احصل على مثيل من VisionImageLabeler:
Swift
letlabeler=Vision.vision().cloudImageLabeler()// Or, to set the minimum confidence required:// let options = VisionCloudImageLabelerOptions()// options.confidenceThreshold = 0.7// let labeler = Vision.vision().cloudImageLabeler(options: options)
Objective-C
FIRVisionImageLabeler*labeler=[[FIRVisionvision]cloudImageLabeler];// Or, to set the minimum confidence required:// FIRVisionCloudImageLabelerOptions *options =// [[FIRVisionCloudImageLabelerOptions alloc] init];// options.confidenceThreshold = 0.7;// FIRVisionImageLabeler *labeler =// [[FIRVision vision] cloudImageLabelerWithOptions:options];
في حال نجاح عملية تصنيف الصور، سيتم تمرير مصفوفة من VisionImageLabel
العناصر إلى معالج الإكمال. يمكنك الحصول من كل عنصر على معلومات حول ميزة تم التعرّف عليها في الصورة.
تاريخ التعديل الأخير: 2025-09-04 (حسب التوقيت العالمي المتفَّق عليه)
[[["يسهُل فهم المحتوى.","easyToUnderstand","thumb-up"],["ساعَدني المحتوى في حلّ مشكلتي.","solvedMyProblem","thumb-up"],["غير ذلك","otherUp","thumb-up"]],[["لا يحتوي على المعلومات التي أحتاج إليها.","missingTheInformationINeed","thumb-down"],["الخطوات معقدة للغاية / كثيرة جدًا.","tooComplicatedTooManySteps","thumb-down"],["المحتوى قديم.","outOfDate","thumb-down"],["ثمة مشكلة في الترجمة.","translationIssue","thumb-down"],["مشكلة في العيّنات / التعليمات البرمجية","samplesCodeIssue","thumb-down"],["غير ذلك","otherDown","thumb-down"]],["تاريخ التعديل الأخير: 2025-09-04 (حسب التوقيت العالمي المتفَّق عليه)"],[],[],null,["| This page describes an old version of labeling objects recognized in an image using the\n| deprecated Firebase ML Vision SDK. As an alternative, you may\n| [call\n| Cloud Vision APIs using Firebase Auth and Callable Functions](/docs/ml/ios/label-images) to allow only users logged\n| into your app to access the API.\n\nYou can use Firebase ML to label objects recognized in an image. See the\n[overview](/docs/ml/label-images) for information about this API's\nfeatures.\n| Use of the Cloud Vision APIs is subject to the [Google Cloud Platform License\n| Agreement](https://cloud.google.com/terms/) and [Service\n| Specific Terms](https://cloud.google.com/terms/service-terms), and billed accordingly. For billing information, see the [Pricing](https://cloud.google.com/vision/pricing) page.\n| **Looking for on-device image labeling?** Try the [standalone ML Kit library](https://developers.google.com/ml-kit/vision/image-labeling).\n\n\u003cbr /\u003e\n\nBefore you begin\n\nIf you have not already added Firebase to your app, do so by following the steps in the [getting started guide](/docs/ios/setup).\n1. Use Swift Package Manager to install and manage Firebase dependencies.\n| Visit [our installation guide](/docs/ios/installation-methods) to learn about the different ways you can add Firebase SDKs to your Apple project, including importing frameworks directly and using CocoaPods.\n1. In Xcode, with your app project open, navigate to **File \\\u003e Add Packages**.\n2. When prompted, add the Firebase Apple platforms SDK repository: \n\n```text\n https://github.com/firebase/firebase-ios-sdk.git\n```\n| **Note:** New projects should use the default (latest) SDK version, but you can choose an older version if needed.\n3. Choose the Firebase ML library.\n4. Add the `-ObjC` flag to the *Other Linker Flags* section of your target's build settings.\n5. When finished, Xcode will automatically begin resolving and downloading your dependencies in the background.\n2. Next, perform some in-app setup:\n1. In your app, import Firebase:\n\n Swift \n\n ```swift\n import FirebaseMLModelDownloader\n ```\n\n Objective-C \n\n ```objective-c\n @import FirebaseMLModelDownloader;\n ```\n3. If you haven't already enabled Cloud-based APIs for your project, do so\n now:\n\n 1. Open the [Firebase ML\n APIs page](//console.firebase.google.com/project/_/ml/apis) in the Firebase console.\n 2. If you haven't already upgraded your project to the\n [pay-as-you-go Blaze pricing plan](/pricing), click **Upgrade** to do so. (You'll be\n prompted to upgrade only if your project isn't on the\n Blaze pricing plan.)\n\n Only projects on the Blaze pricing plan can use\n Cloud-based APIs.\n 3. If Cloud-based APIs aren't already enabled, click **Enable Cloud-based APIs**.\n\n | Before you deploy to production an app that uses a Cloud API, you should take some additional steps to [prevent and mitigate the\n | effect of unauthorized API access](./secure-api-key).\n\nNow you are ready to label images.\n\n1. Prepare the input image\n\nCreate a [`VisionImage`](/docs/reference/swift/firebasemlvision/api/reference/Classes/VisionImage) object using a `UIImage` or a\n`CMSampleBufferRef`.\n\nTo use a `UIImage`:\n\n1. If necessary, rotate the image so that its `imageOrientation` property is `.up`.\n2. Create a `VisionImage` object using the correctly-rotated `UIImage`. Do not specify any rotation metadata---the default value, `.topLeft`, must be used. \n\n Swift \n\n ```swift\n let image = VisionImage(image: uiImage)\n ```\n\n Objective-C \n\n ```objective-c\n FIRVisionImage *image = [[FIRVisionImage alloc] initWithImage:uiImage];\n ```\n\nTo use a `CMSampleBufferRef`:\n\n1. Create a [`VisionImageMetadata`](/docs/reference/swift/firebasemlvision/api/reference/Classes/VisionImageMetadata) object that specifies the\n orientation of the image data contained in the\n `CMSampleBufferRef` buffer.\n\n To get the image orientation: \n\n Swift \n\n ```swift\n func imageOrientation(\n deviceOrientation: UIDeviceOrientation,\n cameraPosition: AVCaptureDevice.Position\n ) -\u003e VisionDetectorImageOrientation {\n switch deviceOrientation {\n case .portrait:\n return cameraPosition == .front ? .leftTop : .rightTop\n case .landscapeLeft:\n return cameraPosition == .front ? .bottomLeft : .topLeft\n case .portraitUpsideDown:\n return cameraPosition == .front ? .rightBottom : .leftBottom\n case .landscapeRight:\n return cameraPosition == .front ? .topRight : .bottomRight\n case .faceDown, .faceUp, .unknown:\n return .leftTop\n }\n }\n ```\n\n Objective-C \n\n ```objective-c\n - (FIRVisionDetectorImageOrientation)\n imageOrientationFromDeviceOrientation:(UIDeviceOrientation)deviceOrientation\n cameraPosition:(AVCaptureDevicePosition)cameraPosition {\n switch (deviceOrientation) {\n case UIDeviceOrientationPortrait:\n if (cameraPosition == AVCaptureDevicePositionFront) {\n return FIRVisionDetectorImageOrientationLeftTop;\n } else {\n return FIRVisionDetectorImageOrientationRightTop;\n }\n case UIDeviceOrientationLandscapeLeft:\n if (cameraPosition == AVCaptureDevicePositionFront) {\n return FIRVisionDetectorImageOrientationBottomLeft;\n } else {\n return FIRVisionDetectorImageOrientationTopLeft;\n }\n case UIDeviceOrientationPortraitUpsideDown:\n if (cameraPosition == AVCaptureDevicePositionFront) {\n return FIRVisionDetectorImageOrientationRightBottom;\n } else {\n return FIRVisionDetectorImageOrientationLeftBottom;\n }\n case UIDeviceOrientationLandscapeRight:\n if (cameraPosition == AVCaptureDevicePositionFront) {\n return FIRVisionDetectorImageOrientationTopRight;\n } else {\n return FIRVisionDetectorImageOrientationBottomRight;\n }\n default:\n return FIRVisionDetectorImageOrientationTopLeft;\n }\n }\n ```\n\n Then, create the metadata object: \n\n Swift \n\n ```swift\n let cameraPosition = AVCaptureDevice.Position.back // Set to the capture device you used.\n let metadata = VisionImageMetadata()\n metadata.orientation = imageOrientation(\n deviceOrientation: UIDevice.current.orientation,\n cameraPosition: cameraPosition\n )\n ```\n\n Objective-C \n\n ```objective-c\n FIRVisionImageMetadata *metadata = [[FIRVisionImageMetadata alloc] init];\n AVCaptureDevicePosition cameraPosition =\n AVCaptureDevicePositionBack; // Set to the capture device you used.\n metadata.orientation =\n [self imageOrientationFromDeviceOrientation:UIDevice.currentDevice.orientation\n cameraPosition:cameraPosition];\n ```\n2. Create a `VisionImage` object using the `CMSampleBufferRef` object and the rotation metadata: \n\n Swift \n\n ```swift\n let image = VisionImage(buffer: sampleBuffer)\n image.metadata = metadata\n ```\n\n Objective-C \n\n ```objective-c\n FIRVisionImage *image = [[FIRVisionImage alloc] initWithBuffer:sampleBuffer];\n image.metadata = metadata;\n ```\n\n2. Configure and run the image labeler To label objects in an image, pass the `VisionImage` object to the `VisionImageLabeler`'s `processImage()` method.\n\n\u003cbr /\u003e\n\n1. First, get an instance of `VisionImageLabeler`:\n\n Swift \n\n let labeler = Vision.vision().cloudImageLabeler()\n\n // Or, to set the minimum confidence required:\n // let options = VisionCloudImageLabelerOptions()\n // options.confidenceThreshold = 0.7\n // let labeler = Vision.vision().cloudImageLabeler(options: options)\n\n Objective-C \n\n FIRVisionImageLabeler *labeler = [[FIRVision vision] cloudImageLabeler];\n\n // Or, to set the minimum confidence required:\n // FIRVisionCloudImageLabelerOptions *options =\n // [[FIRVisionCloudImageLabelerOptions alloc] init];\n // options.confidenceThreshold = 0.7;\n // FIRVisionImageLabeler *labeler =\n // [[FIRVision vision] cloudImageLabelerWithOptions:options];\n\n2. Then, pass the image to the `processImage()` method:\n\n Swift \n\n labeler.process(image) { labels, error in\n guard error == nil, let labels = labels else { return }\n\n // Task succeeded.\n // ...\n }\n\n Objective-C \n\n [labeler processImage:image\n completion:^(NSArray\u003cFIRVisionImageLabel *\u003e *_Nullable labels,\n NSError *_Nullable error) {\n if (error != nil) { return; }\n\n // Task succeeded.\n // ...\n }];\n\n3. Get information about labeled objects If image labeling succeeds, an array of `VisionImageLabel` objects will be passed to the completion handler. From each object, you can get information about a feature recognized in the image.\n\n\u003cbr /\u003e\n\nFor example: \n\nSwift \n\n for label in labels {\n let labelText = label.text\n let entityId = label.entityID\n let confidence = label.confidence\n }\n\nObjective-C \n\n for (FIRVisionImageLabel *label in labels) {\n NSString *labelText = label.text;\n NSString *entityId = label.entityID;\n NSNumber *confidence = label.confidence;\n }\n\nNext steps\n\n- Before you deploy to production an app that uses a Cloud API, you should take some additional steps to [prevent and mitigate the\n effect of unauthorized API access](./secure-api-key)."]]