Gắn nhãn hình ảnh bằng công nghệ học máy của Firebase trên các nền tảng của Apple
Sử dụng bộ sưu tập để sắp xếp ngăn nắp các trang
Lưu và phân loại nội dung dựa trên lựa chọn ưu tiên của bạn.
Bạn có thể dùng Firebase ML để gắn nhãn các đối tượng được nhận dạng trong hình ảnh. Hãy xem phần tổng quan để biết thông tin về các tính năng của API này.
Trước khi bắt đầu
Nếu bạn chưa thêm Firebase vào ứng dụng của mình, hãy làm như vậy bằng cách làm theo các bước trong hướng dẫn bắt đầu sử dụng.
Sử dụng Swift Package Manager để cài đặt và quản lý các phần phụ thuộc của Firebase.
Trong Xcode, khi dự án ứng dụng của bạn đang mở, hãy chuyển đến File > Add Packages (Tệp > Thêm gói).
Khi được nhắc, hãy thêm kho lưu trữ SDK Firebase cho các nền tảng của Apple:
https://github.com/firebase/firebase-ios-sdk.git
Chọn thư viện Firebase ML.
Thêm cờ -ObjC vào mục Cờ trình liên kết khác trong chế độ cài đặt bản dựng của mục tiêu.
Khi hoàn tất, Xcode sẽ tự động bắt đầu phân giải và tải các phần phụ thuộc của bạn xuống ở chế độ nền.
Tiếp theo, hãy thực hiện một số bước thiết lập trong ứng dụng:
Nếu chưa nâng cấp dự án lên gói giá linh hoạt (trả tiền theo mức dùng), hãy nhấp vào Nâng cấp để nâng cấp. (Bạn sẽ chỉ được nhắc nâng cấp nếu dự án của bạn không sử dụng gói giá linh hoạt.)
Chỉ những dự án sử dụng gói giá Blaze mới có thể dùng các API dựa trên đám mây.
Nếu bạn chưa bật API dựa trên đám mây, hãy nhấp vào Bật API dựa trên đám mây.
Giờ đây, bạn đã sẵn sàng gắn nhãn cho hình ảnh.
1. Chuẩn bị hình ảnh đầu vào
Tạo đối tượng VisionImage bằng cách sử dụng UIImage hoặc CMSampleBufferRef.
Cách sử dụng UIImage:
Nếu cần, hãy xoay hình ảnh sao cho thuộc tính imageOrientation của hình ảnh là .up.
Tạo một đối tượng VisionImage bằng cách sử dụng UIImage được xoay chính xác. Không chỉ định siêu dữ liệu xoay nào – bạn phải sử dụng giá trị mặc định là .topLeft.
letcameraPosition=AVCaptureDevice.Position.back// Set to the capture device you used.letmetadata=VisionImageMetadata()metadata.orientation=imageOrientation(deviceOrientation:UIDevice.current.orientation,cameraPosition:cameraPosition)
Objective-C
FIRVisionImageMetadata*metadata=[[FIRVisionImageMetadataalloc]init];AVCaptureDevicePositioncameraPosition=AVCaptureDevicePositionBack;// Set to the capture device you used.metadata.orientation=[selfimageOrientationFromDeviceOrientation:UIDevice.currentDevice.orientationcameraPosition:cameraPosition];
Tạo một đối tượng VisionImage bằng đối tượng CMSampleBufferRef và siêu dữ liệu xoay:
Để gắn nhãn các đối tượng trong hình ảnh, hãy truyền đối tượng VisionImage vào phương thức processImage() của VisionImageLabeler.
Trước tiên, hãy lấy một thực thể của VisionImageLabeler:
Swift
letlabeler=Vision.vision().cloudImageLabeler()// Or, to set the minimum confidence required:// let options = VisionCloudImageLabelerOptions()// options.confidenceThreshold = 0.7// let labeler = Vision.vision().cloudImageLabeler(options: options)
Objective-C
FIRVisionImageLabeler*labeler=[[FIRVisionvision]cloudImageLabeler];// Or, to set the minimum confidence required:// FIRVisionCloudImageLabelerOptions *options =// [[FIRVisionCloudImageLabelerOptions alloc] init];// options.confidenceThreshold = 0.7;// FIRVisionImageLabeler *labeler =// [[FIRVision vision] cloudImageLabelerWithOptions:options];
Sau đó, hãy truyền hình ảnh đến phương thức processImage():
Nếu việc gắn nhãn hình ảnh thành công, một mảng các đối tượng VisionImageLabel sẽ được truyền đến trình xử lý hoàn thành. Từ mỗi đối tượng, bạn có thể nhận được thông tin về một đối tượng được nhận dạng trong hình ảnh.
[[["Dễ hiểu","easyToUnderstand","thumb-up"],["Giúp tôi giải quyết được vấn đề","solvedMyProblem","thumb-up"],["Khác","otherUp","thumb-up"]],[["Thiếu thông tin tôi cần","missingTheInformationINeed","thumb-down"],["Quá phức tạp/quá nhiều bước","tooComplicatedTooManySteps","thumb-down"],["Đã lỗi thời","outOfDate","thumb-down"],["Vấn đề về bản dịch","translationIssue","thumb-down"],["Vấn đề về mẫu/mã","samplesCodeIssue","thumb-down"],["Khác","otherDown","thumb-down"]],["Cập nhật lần gần đây nhất: 2025-09-06 UTC."],[],[],null,["| This page describes an old version of labeling objects recognized in an image using the\n| deprecated Firebase ML Vision SDK. As an alternative, you may\n| [call\n| Cloud Vision APIs using Firebase Auth and Callable Functions](/docs/ml/ios/label-images) to allow only users logged\n| into your app to access the API.\n\nYou can use Firebase ML to label objects recognized in an image. See the\n[overview](/docs/ml/label-images) for information about this API's\nfeatures.\n| Use of the Cloud Vision APIs is subject to the [Google Cloud Platform License\n| Agreement](https://cloud.google.com/terms/) and [Service\n| Specific Terms](https://cloud.google.com/terms/service-terms), and billed accordingly. For billing information, see the [Pricing](https://cloud.google.com/vision/pricing) page.\n| **Looking for on-device image labeling?** Try the [standalone ML Kit library](https://developers.google.com/ml-kit/vision/image-labeling).\n\n\u003cbr /\u003e\n\nBefore you begin\n\nIf you have not already added Firebase to your app, do so by following the steps in the [getting started guide](/docs/ios/setup).\n1. Use Swift Package Manager to install and manage Firebase dependencies.\n| Visit [our installation guide](/docs/ios/installation-methods) to learn about the different ways you can add Firebase SDKs to your Apple project, including importing frameworks directly and using CocoaPods.\n1. In Xcode, with your app project open, navigate to **File \\\u003e Add Packages**.\n2. When prompted, add the Firebase Apple platforms SDK repository: \n\n```text\n https://github.com/firebase/firebase-ios-sdk.git\n```\n| **Note:** New projects should use the default (latest) SDK version, but you can choose an older version if needed.\n3. Choose the Firebase ML library.\n4. Add the `-ObjC` flag to the *Other Linker Flags* section of your target's build settings.\n5. When finished, Xcode will automatically begin resolving and downloading your dependencies in the background.\n2. Next, perform some in-app setup:\n1. In your app, import Firebase:\n\n Swift \n\n ```swift\n import FirebaseMLModelDownloader\n ```\n\n Objective-C \n\n ```objective-c\n @import FirebaseMLModelDownloader;\n ```\n3. If you haven't already enabled Cloud-based APIs for your project, do so\n now:\n\n 1. Open the [Firebase ML\n APIs page](//console.firebase.google.com/project/_/ml/apis) in the Firebase console.\n 2. If you haven't already upgraded your project to the\n [pay-as-you-go Blaze pricing plan](/pricing), click **Upgrade** to do so. (You'll be\n prompted to upgrade only if your project isn't on the\n Blaze pricing plan.)\n\n Only projects on the Blaze pricing plan can use\n Cloud-based APIs.\n 3. If Cloud-based APIs aren't already enabled, click **Enable Cloud-based APIs**.\n\n | Before you deploy to production an app that uses a Cloud API, you should take some additional steps to [prevent and mitigate the\n | effect of unauthorized API access](./secure-api-key).\n\nNow you are ready to label images.\n\n1. Prepare the input image\n\nCreate a [`VisionImage`](/docs/reference/swift/firebasemlvision/api/reference/Classes/VisionImage) object using a `UIImage` or a\n`CMSampleBufferRef`.\n\nTo use a `UIImage`:\n\n1. If necessary, rotate the image so that its `imageOrientation` property is `.up`.\n2. Create a `VisionImage` object using the correctly-rotated `UIImage`. Do not specify any rotation metadata---the default value, `.topLeft`, must be used. \n\n Swift \n\n ```swift\n let image = VisionImage(image: uiImage)\n ```\n\n Objective-C \n\n ```objective-c\n FIRVisionImage *image = [[FIRVisionImage alloc] initWithImage:uiImage];\n ```\n\nTo use a `CMSampleBufferRef`:\n\n1. Create a [`VisionImageMetadata`](/docs/reference/swift/firebasemlvision/api/reference/Classes/VisionImageMetadata) object that specifies the\n orientation of the image data contained in the\n `CMSampleBufferRef` buffer.\n\n To get the image orientation: \n\n Swift \n\n ```swift\n func imageOrientation(\n deviceOrientation: UIDeviceOrientation,\n cameraPosition: AVCaptureDevice.Position\n ) -\u003e VisionDetectorImageOrientation {\n switch deviceOrientation {\n case .portrait:\n return cameraPosition == .front ? .leftTop : .rightTop\n case .landscapeLeft:\n return cameraPosition == .front ? .bottomLeft : .topLeft\n case .portraitUpsideDown:\n return cameraPosition == .front ? .rightBottom : .leftBottom\n case .landscapeRight:\n return cameraPosition == .front ? .topRight : .bottomRight\n case .faceDown, .faceUp, .unknown:\n return .leftTop\n }\n }\n ```\n\n Objective-C \n\n ```objective-c\n - (FIRVisionDetectorImageOrientation)\n imageOrientationFromDeviceOrientation:(UIDeviceOrientation)deviceOrientation\n cameraPosition:(AVCaptureDevicePosition)cameraPosition {\n switch (deviceOrientation) {\n case UIDeviceOrientationPortrait:\n if (cameraPosition == AVCaptureDevicePositionFront) {\n return FIRVisionDetectorImageOrientationLeftTop;\n } else {\n return FIRVisionDetectorImageOrientationRightTop;\n }\n case UIDeviceOrientationLandscapeLeft:\n if (cameraPosition == AVCaptureDevicePositionFront) {\n return FIRVisionDetectorImageOrientationBottomLeft;\n } else {\n return FIRVisionDetectorImageOrientationTopLeft;\n }\n case UIDeviceOrientationPortraitUpsideDown:\n if (cameraPosition == AVCaptureDevicePositionFront) {\n return FIRVisionDetectorImageOrientationRightBottom;\n } else {\n return FIRVisionDetectorImageOrientationLeftBottom;\n }\n case UIDeviceOrientationLandscapeRight:\n if (cameraPosition == AVCaptureDevicePositionFront) {\n return FIRVisionDetectorImageOrientationTopRight;\n } else {\n return FIRVisionDetectorImageOrientationBottomRight;\n }\n default:\n return FIRVisionDetectorImageOrientationTopLeft;\n }\n }\n ```\n\n Then, create the metadata object: \n\n Swift \n\n ```swift\n let cameraPosition = AVCaptureDevice.Position.back // Set to the capture device you used.\n let metadata = VisionImageMetadata()\n metadata.orientation = imageOrientation(\n deviceOrientation: UIDevice.current.orientation,\n cameraPosition: cameraPosition\n )\n ```\n\n Objective-C \n\n ```objective-c\n FIRVisionImageMetadata *metadata = [[FIRVisionImageMetadata alloc] init];\n AVCaptureDevicePosition cameraPosition =\n AVCaptureDevicePositionBack; // Set to the capture device you used.\n metadata.orientation =\n [self imageOrientationFromDeviceOrientation:UIDevice.currentDevice.orientation\n cameraPosition:cameraPosition];\n ```\n2. Create a `VisionImage` object using the `CMSampleBufferRef` object and the rotation metadata: \n\n Swift \n\n ```swift\n let image = VisionImage(buffer: sampleBuffer)\n image.metadata = metadata\n ```\n\n Objective-C \n\n ```objective-c\n FIRVisionImage *image = [[FIRVisionImage alloc] initWithBuffer:sampleBuffer];\n image.metadata = metadata;\n ```\n\n2. Configure and run the image labeler To label objects in an image, pass the `VisionImage` object to the `VisionImageLabeler`'s `processImage()` method.\n\n\u003cbr /\u003e\n\n1. First, get an instance of `VisionImageLabeler`:\n\n Swift \n\n let labeler = Vision.vision().cloudImageLabeler()\n\n // Or, to set the minimum confidence required:\n // let options = VisionCloudImageLabelerOptions()\n // options.confidenceThreshold = 0.7\n // let labeler = Vision.vision().cloudImageLabeler(options: options)\n\n Objective-C \n\n FIRVisionImageLabeler *labeler = [[FIRVision vision] cloudImageLabeler];\n\n // Or, to set the minimum confidence required:\n // FIRVisionCloudImageLabelerOptions *options =\n // [[FIRVisionCloudImageLabelerOptions alloc] init];\n // options.confidenceThreshold = 0.7;\n // FIRVisionImageLabeler *labeler =\n // [[FIRVision vision] cloudImageLabelerWithOptions:options];\n\n2. Then, pass the image to the `processImage()` method:\n\n Swift \n\n labeler.process(image) { labels, error in\n guard error == nil, let labels = labels else { return }\n\n // Task succeeded.\n // ...\n }\n\n Objective-C \n\n [labeler processImage:image\n completion:^(NSArray\u003cFIRVisionImageLabel *\u003e *_Nullable labels,\n NSError *_Nullable error) {\n if (error != nil) { return; }\n\n // Task succeeded.\n // ...\n }];\n\n3. Get information about labeled objects If image labeling succeeds, an array of `VisionImageLabel` objects will be passed to the completion handler. From each object, you can get information about a feature recognized in the image.\n\n\u003cbr /\u003e\n\nFor example: \n\nSwift \n\n for label in labels {\n let labelText = label.text\n let entityId = label.entityID\n let confidence = label.confidence\n }\n\nObjective-C \n\n for (FIRVisionImageLabel *label in labels) {\n NSString *labelText = label.text;\n NSString *entityId = label.entityID;\n NSNumber *confidence = label.confidence;\n }\n\nNext steps\n\n- Before you deploy to production an app that uses a Cloud API, you should take some additional steps to [prevent and mitigate the\n effect of unauthorized API access](./secure-api-key)."]]