您可以使用 Firebase ML 辨識圖片中的文字。Firebase ML 提供一般用途 API,可用於辨識圖片中的文字,例如路標上的文字,以及經過最佳化調整的 API,可用於辨識文件中的文字。
事前準備
-
如果您尚未在應用程式中加入 Firebase,請按照入門指南中的步驟操作。
- 在 Xcode 中保持開啟應用程式專案,然後依序點選「File」>「Add Packages」。
- 系統提示時,請新增 Firebase Apple 平台 SDK 存放區:
- 選擇 Firebase ML 程式庫。
- 將
-ObjC
標記新增至目標的建構設定「Other Linker Flags」部分。 - 完成後,Xcode 就會自動開始在背景中解析並下載依附元件。
- 在應用程式中匯入 Firebase:
Swift
import FirebaseMLModelDownloader
Objective-C
@import FirebaseMLModelDownloader;
-
如果您尚未為專案啟用雲端 API,請立即啟用:
- 開啟 Firebase 控制台的 Firebase ML API 頁面。
-
如果您尚未將專案升級至 Blaze 定價方案,請按一下「Upgrade」進行升級 (只有在專案未採用 Blaze 方案時,系統才會提示您升級)。
只有 Blaze 級別專案可以使用雲端 API。
- 如果尚未啟用雲端 API,請按一下「啟用雲端 API」。
使用 Swift Package Manager 安裝及管理 Firebase 依附元件。
https://github.com/firebase/firebase-ios-sdk.git
接下來,請執行一些應用程式內設定:
您現在可以開始辨識圖片中的文字。
輸入圖片規範
-
如要讓 Firebase ML 準確辨識文字,輸入圖片必須包含由足夠像素資料代表的文字。以拉丁文為例,每個字元應至少為 16 x 16 像素。中文、日文和韓文的文字,每個字元應為 24x24 像素。對於所有語言而言,字元大小超過 24x24 像素通常不會帶來任何準確度優勢。
舉例來說,如果要掃描占據整個圖片寬度的名片,使用 640x480 的圖片可能會比較適合。如要掃描列印在 A4 紙張上的文件,可能需要 720 x 1280 像素的圖片。
-
若圖片對焦不佳,文字辨識準確度可能會降低。如果您無法取得可接受的結果,請嘗試要求使用者重新拍攝圖片。
辨識圖片中的文字
如要辨識圖片中的文字,請按照下方說明執行文字辨識器。
1. 執行文字辨識器
將圖片以UIImage
或 CMSampleBufferRef
的形式傳遞至 VisionTextRecognizer
的 process(_:completion:)
方法:
- 呼叫
cloudTextRecognizer
即可取得VisionTextRecognizer
的例項:Swift
let vision = Vision.vision() let textRecognizer = vision.cloudTextRecognizer() // Or, to provide language hints to assist with language detection: // See https://cloud.google.com/vision/docs/languages for supported languages let options = VisionCloudTextRecognizerOptions() options.languageHints = ["en", "hi"] let textRecognizer = vision.cloudTextRecognizer(options: options)
Objective-C
FIRVision *vision = [FIRVision vision]; FIRVisionTextRecognizer *textRecognizer = [vision cloudTextRecognizer]; // Or, to provide language hints to assist with language detection: // See https://cloud.google.com/vision/docs/languages for supported languages FIRVisionCloudTextRecognizerOptions *options = [[FIRVisionCloudTextRecognizerOptions alloc] init]; options.languageHints = @[@"en", @"hi"]; FIRVisionTextRecognizer *textRecognizer = [vision cloudTextRecognizerWithOptions:options];
-
如要呼叫 Cloud Vision,圖片必須以 base64 編碼字串格式輸入。如何處理
UIImage
:Swift
guard let imageData = uiImage.jpegData(compressionQuality: 1.0) else { return } let base64encodedImage = imageData.base64EncodedString()
Objective-C
NSData *imageData = UIImageJPEGRepresentation(uiImage, 1.0f); NSString *base64encodedImage = [imageData base64EncodedStringWithOptions:NSDataBase64Encoding76CharacterLineLength];
-
接著,將圖片傳遞至
process(_:completion:)
方法:Swift
textRecognizer.process(visionImage) { result, error in guard error == nil, let result = result else { // ... return } // Recognized text }
Objective-C
[textRecognizer processImage:image completion:^(FIRVisionText *_Nullable result, NSError *_Nullable error) { if (error != nil || result == nil) { // ... return; } // Recognized text }];
2. 從已辨識的文字區塊中擷取文字
如果文字辨識作業成功,系統會傳回VisionText
物件。VisionText
物件包含圖片中辨識到的完整文字,以及零個或多個 VisionTextBlock
物件。
每個 VisionTextBlock
都代表一個矩形文字區塊,其中包含零個或多個 VisionTextLine
物件。每個 VisionTextLine
物件都包含零個或多個 VisionTextElement
物件,代表字詞和類似字詞的實體 (日期、數字等)。
針對每個 VisionTextBlock
、VisionTextLine
和 VisionTextElement
物件,您可以取得在該區域中辨識到的文字,以及該區域的邊界座標。
例如:
Swift
let resultText = result.text for block in result.blocks { let blockText = block.text let blockConfidence = block.confidence let blockLanguages = block.recognizedLanguages let blockCornerPoints = block.cornerPoints let blockFrame = block.frame for line in block.lines { let lineText = line.text let lineConfidence = line.confidence let lineLanguages = line.recognizedLanguages let lineCornerPoints = line.cornerPoints let lineFrame = line.frame for element in line.elements { let elementText = element.text let elementConfidence = element.confidence let elementLanguages = element.recognizedLanguages let elementCornerPoints = element.cornerPoints let elementFrame = element.frame } } }
Objective-C
NSString *resultText = result.text; for (FIRVisionTextBlock *block in result.blocks) { NSString *blockText = block.text; NSNumber *blockConfidence = block.confidence; NSArray<FIRVisionTextRecognizedLanguage *> *blockLanguages = block.recognizedLanguages; NSArray<NSValue *> *blockCornerPoints = block.cornerPoints; CGRect blockFrame = block.frame; for (FIRVisionTextLine *line in block.lines) { NSString *lineText = line.text; NSNumber *lineConfidence = line.confidence; NSArray<FIRVisionTextRecognizedLanguage *> *lineLanguages = line.recognizedLanguages; NSArray<NSValue *> *lineCornerPoints = line.cornerPoints; CGRect lineFrame = line.frame; for (FIRVisionTextElement *element in line.elements) { NSString *elementText = element.text; NSNumber *elementConfidence = element.confidence; NSArray<FIRVisionTextRecognizedLanguage *> *elementLanguages = element.recognizedLanguages; NSArray<NSValue *> *elementCornerPoints = element.cornerPoints; CGRect elementFrame = element.frame; } } }
後續步驟
- 在將使用 Cloud API 的應用程式部署至正式環境前,您應採取一些額外步驟,防止及減輕未經授權的 API 存取行為。
辨識文件圖片中的文字
如要辨識文件中的文字,請按照下文所述設定及執行文件文字辨識器。
下文所述的文件文字辨識 API 提供的介面,旨在讓您更輕鬆地處理文件圖片。不過,如果您偏好使用稀疏文字 API 提供的介面,可以改用該介面掃描文件,方法是將雲端文字辨識器設定為使用密集文字模型。
如要使用文件文字辨識 API,請按照下列步驟操作:
1. 執行文字辨識器
將圖片以UIImage
或 CMSampleBufferRef
的形式傳遞至 VisionDocumentTextRecognizer
的 process(_:completion:)
方法:
- 呼叫
cloudDocumentTextRecognizer
即可取得VisionDocumentTextRecognizer
的例項:Swift
let vision = Vision.vision() let textRecognizer = vision.cloudDocumentTextRecognizer() // Or, to provide language hints to assist with language detection: // See https://cloud.google.com/vision/docs/languages for supported languages let options = VisionCloudDocumentTextRecognizerOptions() options.languageHints = ["en", "hi"] let textRecognizer = vision.cloudDocumentTextRecognizer(options: options)
Objective-C
FIRVision *vision = [FIRVision vision]; FIRVisionDocumentTextRecognizer *textRecognizer = [vision cloudDocumentTextRecognizer]; // Or, to provide language hints to assist with language detection: // See https://cloud.google.com/vision/docs/languages for supported languages FIRVisionCloudDocumentTextRecognizerOptions *options = [[FIRVisionCloudDocumentTextRecognizerOptions alloc] init]; options.languageHints = @[@"en", @"hi"]; FIRVisionDocumentTextRecognizer *textRecognizer = [vision cloudDocumentTextRecognizerWithOptions:options];
-
如要呼叫 Cloud Vision,圖片必須以 base64 編碼字串格式輸入。如何處理
UIImage
:Swift
guard let imageData = uiImage.jpegData(compressionQuality: 1.0) else { return } let base64encodedImage = imageData.base64EncodedString()
Objective-C
NSData *imageData = UIImageJPEGRepresentation(uiImage, 1.0f); NSString *base64encodedImage = [imageData base64EncodedStringWithOptions:NSDataBase64Encoding76CharacterLineLength];
-
接著,將圖片傳遞至
process(_:completion:)
方法:Swift
textRecognizer.process(visionImage) { result, error in guard error == nil, let result = result else { // ... return } // Recognized text }
Objective-C
[textRecognizer processImage:image completion:^(FIRVisionDocumentText *_Nullable result, NSError *_Nullable error) { if (error != nil || result == nil) { // ... return; } // Recognized text }];
2. 從已辨識的文字區塊中擷取文字
如果文字辨識作業成功,系統會傳回VisionDocumentText
物件。VisionDocumentText
物件包含圖片中辨識出的完整文字,以及反映辨識文件結構的物件階層:
您可以為每個 VisionDocumentTextBlock
、VisionDocumentTextParagraph
、VisionDocumentTextWord
和 VisionDocumentTextSymbol
物件取得在該區域中辨識到的文字,以及該區域的邊界座標。
例如:
Swift
let resultText = result.text for block in result.blocks { let blockText = block.text let blockConfidence = block.confidence let blockRecognizedLanguages = block.recognizedLanguages let blockBreak = block.recognizedBreak let blockCornerPoints = block.cornerPoints let blockFrame = block.frame for paragraph in block.paragraphs { let paragraphText = paragraph.text let paragraphConfidence = paragraph.confidence let paragraphRecognizedLanguages = paragraph.recognizedLanguages let paragraphBreak = paragraph.recognizedBreak let paragraphCornerPoints = paragraph.cornerPoints let paragraphFrame = paragraph.frame for word in paragraph.words { let wordText = word.text let wordConfidence = word.confidence let wordRecognizedLanguages = word.recognizedLanguages let wordBreak = word.recognizedBreak let wordCornerPoints = word.cornerPoints let wordFrame = word.frame for symbol in word.symbols { let symbolText = symbol.text let symbolConfidence = symbol.confidence let symbolRecognizedLanguages = symbol.recognizedLanguages let symbolBreak = symbol.recognizedBreak let symbolCornerPoints = symbol.cornerPoints let symbolFrame = symbol.frame } } } }
Objective-C
NSString *resultText = result.text; for (FIRVisionDocumentTextBlock *block in result.blocks) { NSString *blockText = block.text; NSNumber *blockConfidence = block.confidence; NSArray<FIRVisionTextRecognizedLanguage *> *blockRecognizedLanguages = block.recognizedLanguages; FIRVisionTextRecognizedBreak *blockBreak = block.recognizedBreak; CGRect blockFrame = block.frame; for (FIRVisionDocumentTextParagraph *paragraph in block.paragraphs) { NSString *paragraphText = paragraph.text; NSNumber *paragraphConfidence = paragraph.confidence; NSArray<FIRVisionTextRecognizedLanguage *> *paragraphRecognizedLanguages = paragraph.recognizedLanguages; FIRVisionTextRecognizedBreak *paragraphBreak = paragraph.recognizedBreak; CGRect paragraphFrame = paragraph.frame; for (FIRVisionDocumentTextWord *word in paragraph.words) { NSString *wordText = word.text; NSNumber *wordConfidence = word.confidence; NSArray<FIRVisionTextRecognizedLanguage *> *wordRecognizedLanguages = word.recognizedLanguages; FIRVisionTextRecognizedBreak *wordBreak = word.recognizedBreak; CGRect wordFrame = word.frame; for (FIRVisionDocumentTextSymbol *symbol in word.symbols) { NSString *symbolText = symbol.text; NSNumber *symbolConfidence = symbol.confidence; NSArray<FIRVisionTextRecognizedLanguage *> *symbolRecognizedLanguages = symbol.recognizedLanguages; FIRVisionTextRecognizedBreak *symbolBreak = symbol.recognizedBreak; CGRect symbolFrame = symbol.frame; } } } }
後續步驟
- 在將使用 Cloud API 的應用程式部署至正式環境前,您應採取一些額外步驟,防止及減輕未經授權的 API 存取行為。