Zapytania w Cloud Firestore umożliwiają znajdowanie dokumentów w dużych kolekcjach. Aby uzyskać statystyki dotyczące właściwości kolekcji jako całości, możesz agregować dane w jej obrębie.
Dane możesz agregować w momencie odczytu lub zapisu:
Aggregacje na etapie odczytu obliczają wynik w momencie wysłania żądania. Cloud Firestore obsługuje zapytania agregacyjne
count()
,sum()
iaverage()
w czasie odczytu. Zapytania zbiorcze w czasie odczytu są łatwiejsze do dodania do aplikacji niż zapytania zbiorcze w czasie zapisu. Więcej informacji o zapytaniach agregacji znajdziesz w artykule Sumaryczne przedstawianie danych za pomocą zapytań agregacji.Agregacje w czasie zapisu obliczają wynik za każdym razem, gdy aplikacja wykonuje odpowiednią operację zapisu. Agregacje na etapie zapisu wymagają więcej pracy, ale możesz ich używać zamiast agregacji na etapie odczytu z jednego z tych powodów:
- Chcesz słuchać wyników agregacji w celu uzyskania aktualizacji w czasie rzeczywistym.
Zapytania agregacyjne
count()
,sum()
iaverage()
nie obsługują aktualizacji w czasie rzeczywistym. - Chcesz przechowywać wynik agregacji w pamięci podręcznej po stronie klienta.
Zapytania agregacyjne
count()
,sum()
iaverage()
nie obsługują buforowania. - Zbierasz dane z dziesiątek tysięcy dokumentów każdego z użytkowników i uwzględniasz koszty. W przypadku mniejszej liczby dokumentów agregacje w czasie odczytu są tańsze. W przypadku dużej liczby dokumentów w agregacji agregacja na etapie zapisu może być tańsza.
- Chcesz słuchać wyników agregacji w celu uzyskania aktualizacji w czasie rzeczywistym.
Zapytania agregacyjne
Możesz zaimplementować agregację w czasie zapisu, używając transakcji po stronie klienta lub funkcji Cloud Functions. W następnych sekcjach znajdziesz informacje o wdrażaniu agregacji na etapie zapisu.
Rozwiązanie: agregacja w czasie zapisu z transakcją po stronie klienta
Rozważ aplikację z lokalnymi rekomendacjami, która pomaga użytkownikom znaleźć świetne restauracje. To zapytanie zwraca wszystkie oceny danej restauracji:
Sieć
db.collection("restaurants") .doc("arinell-pizza") .collection("ratings") .get();
Swift
do { let snapshot = try await db.collection("restaurants") .document("arinell-pizza") .collection("ratings") .getDocuments() print(snapshot) } catch { print(error) }
Objective-C
FIRQuery *query = [[[self.db collectionWithPath:@"restaurants"] documentWithPath:@"arinell-pizza"] collectionWithPath:@"ratings"]; [query getDocumentsWithCompletion:^(FIRQuerySnapshot * _Nullable snapshot, NSError * _Nullable error) { // ... }];
Kotlin+KTX
db.collection("restaurants") .document("arinell-pizza") .collection("ratings") .get()
Java
db.collection("restaurants") .document("arinell-pizza") .collection("ratings") .get();
Zamiast pobierać wszystkie oceny, a potem obliczać informacji zbiorczych, możemy przechowywać te informacje w samym dokumencie restauracji:
Sieć
var arinellDoc = { name: 'Arinell Pizza', avgRating: 4.65, numRatings: 683 };
Swift
struct Restaurant { let name: String let avgRating: Float let numRatings: Int } let arinell = Restaurant(name: "Arinell Pizza", avgRating: 4.65, numRatings: 683)
Objective-C
@interface FIRRestaurant : NSObject @property (nonatomic, readonly) NSString *name; @property (nonatomic, readonly) float averageRating; @property (nonatomic, readonly) NSInteger ratingCount; - (instancetype)initWithName:(NSString *)name averageRating:(float)averageRating ratingCount:(NSInteger)ratingCount; @end @implementation FIRRestaurant - (instancetype)initWithName:(NSString *)name averageRating:(float)averageRating ratingCount:(NSInteger)ratingCount { self = [super init]; if (self != nil) { _name = name; _averageRating = averageRating; _ratingCount = ratingCount; } return self; } @end
Kotlin+KTX
data class Restaurant( // default values required for use with "toObject" internal var name: String = "", internal var avgRating: Double = 0.0, internal var numRatings: Int = 0, )
val arinell = Restaurant("Arinell Pizza", 4.65, 683)
Java
public class Restaurant { String name; double avgRating; int numRatings; public Restaurant(String name, double avgRating, int numRatings) { this.name = name; this.avgRating = avgRating; this.numRatings = numRatings; } }
Restaurant arinell = new Restaurant("Arinell Pizza", 4.65, 683);
Aby zapewnić spójność tych agregacji, należy je aktualizować za każdym razem, gdy do kolekcji podrzędnej dodawana jest nowa ocena. Jednym ze sposobów zapewnienia spójności jest dodanie i zaktualizowanie w ramach jednej transakcji:
Sieć
function addRating(restaurantRef, rating) { // Create a reference for a new rating, for use inside the transaction var ratingRef = restaurantRef.collection('ratings').doc(); // In a transaction, add the new rating and update the aggregate totals return db.runTransaction((transaction) => { return transaction.get(restaurantRef).then((res) => { if (!res.exists) { throw "Document does not exist!"; } // Compute new number of ratings var newNumRatings = res.data().numRatings + 1; // Compute new average rating var oldRatingTotal = res.data().avgRating * res.data().numRatings; var newAvgRating = (oldRatingTotal + rating) / newNumRatings; // Commit to Firestore transaction.update(restaurantRef, { numRatings: newNumRatings, avgRating: newAvgRating }); transaction.set(ratingRef, { rating: rating }); }); }); }
Swift
func addRatingTransaction(restaurantRef: DocumentReference, rating: Float) async { let ratingRef: DocumentReference = restaurantRef.collection("ratings").document() do { let _ = try await db.runTransaction({ (transaction, errorPointer) -> Any? in do { let restaurantDocument = try transaction.getDocument(restaurantRef).data() guard var restaurantData = restaurantDocument else { return nil } // Compute new number of ratings let numRatings = restaurantData["numRatings"] as! Int let newNumRatings = numRatings + 1 // Compute new average rating let avgRating = restaurantData["avgRating"] as! Float let oldRatingTotal = avgRating * Float(numRatings) let newAvgRating = (oldRatingTotal + rating) / Float(newNumRatings) // Set new restaurant info restaurantData["numRatings"] = newNumRatings restaurantData["avgRating"] = newAvgRating // Commit to Firestore transaction.setData(restaurantData, forDocument: restaurantRef) transaction.setData(["rating": rating], forDocument: ratingRef) } catch { // Error getting restaurant data // ... } return nil }) } catch { // ... } }
Objective-C
- (void)addRatingTransactionWithRestaurantReference:(FIRDocumentReference *)restaurant rating:(float)rating { FIRDocumentReference *ratingReference = [[restaurant collectionWithPath:@"ratings"] documentWithAutoID]; [self.db runTransactionWithBlock:^id (FIRTransaction *transaction, NSError **errorPointer) { FIRDocumentSnapshot *restaurantSnapshot = [transaction getDocument:restaurant error:errorPointer]; if (restaurantSnapshot == nil) { return nil; } NSMutableDictionary *restaurantData = [restaurantSnapshot.data mutableCopy]; if (restaurantData == nil) { return nil; } // Compute new number of ratings NSInteger ratingCount = [restaurantData[@"numRatings"] integerValue]; NSInteger newRatingCount = ratingCount + 1; // Compute new average rating float averageRating = [restaurantData[@"avgRating"] floatValue]; float newAverageRating = (averageRating * ratingCount + rating) / newRatingCount; // Set new restaurant info restaurantData[@"numRatings"] = @(newRatingCount); restaurantData[@"avgRating"] = @(newAverageRating); // Commit to Firestore [transaction setData:restaurantData forDocument:restaurant]; [transaction setData:@{@"rating": @(rating)} forDocument:ratingReference]; return nil; } completion:^(id _Nullable result, NSError * _Nullable error) { // ... }]; }
Kotlin+KTX
private fun addRating(restaurantRef: DocumentReference, rating: Float): Task<Void> { // Create reference for new rating, for use inside the transaction val ratingRef = restaurantRef.collection("ratings").document() // In a transaction, add the new rating and update the aggregate totals return db.runTransaction { transaction -> val restaurant = transaction.get(restaurantRef).toObject<Restaurant>()!! // Compute new number of ratings val newNumRatings = restaurant.numRatings + 1 // Compute new average rating val oldRatingTotal = restaurant.avgRating * restaurant.numRatings val newAvgRating = (oldRatingTotal + rating) / newNumRatings // Set new restaurant info restaurant.numRatings = newNumRatings restaurant.avgRating = newAvgRating // Update restaurant transaction.set(restaurantRef, restaurant) // Update rating val data = hashMapOf<String, Any>( "rating" to rating, ) transaction.set(ratingRef, data, SetOptions.merge()) null } }
Java
private Task<Void> addRating(final DocumentReference restaurantRef, final float rating) { // Create reference for new rating, for use inside the transaction final DocumentReference ratingRef = restaurantRef.collection("ratings").document(); // In a transaction, add the new rating and update the aggregate totals return db.runTransaction(new Transaction.Function<Void>() { @Override public Void apply(@NonNull Transaction transaction) throws FirebaseFirestoreException { Restaurant restaurant = transaction.get(restaurantRef).toObject(Restaurant.class); // Compute new number of ratings int newNumRatings = restaurant.numRatings + 1; // Compute new average rating double oldRatingTotal = restaurant.avgRating * restaurant.numRatings; double newAvgRating = (oldRatingTotal + rating) / newNumRatings; // Set new restaurant info restaurant.numRatings = newNumRatings; restaurant.avgRating = newAvgRating; // Update restaurant transaction.set(restaurantRef, restaurant); // Update rating Map<String, Object> data = new HashMap<>(); data.put("rating", rating); transaction.set(ratingRef, data, SetOptions.merge()); return null; } }); }
Transakcje zapewniają spójność danych zbiorczych z podstawową kolekcją. Więcej informacji o transakcjach w Cloud Firestore znajdziesz w artykule Transakcje i zbiorowe zapisy.
Ograniczenia
Rozwiązanie pokazane powyżej demonstruje agregację danych za pomocą biblioteki klienta Cloud Firestore, ale musisz mieć na uwadze te ograniczenia:
- Bezpieczeństwo: transakcje po stronie klienta wymagają przyznania klientom uprawnień do aktualizowania danych zbiorczych w Twojej bazie danych. Chociaż możesz ograniczyć ryzyko związane z takim podejściem, pisząc zaawansowane reguły zabezpieczeń, może to nie być odpowiednie w każdej sytuacji.
- Obsługa offline – transakcje po stronie klienta nie będą się udawać, gdy urządzenie użytkownika będzie offline. Oznacza to, że musisz uwzględnić ten przypadek w swojej aplikacji i ponownie spróbować w odpowiednim momencie.
- Skuteczność – jeśli transakcja zawiera wiele operacji odczytu, zapisu i aktualizacji, może wymagać wysłania wielu żądań do backenduCloud Firestore. Na urządzeniu mobilnym może to zająć sporo czasu.
- Szybkość zapisu – to rozwiązanie może nie działać w przypadku często aktualizowanych agregacji, ponieważ dokumenty w Cloud Firestore można zaktualizować maksymalnie raz na sekundę. Jeśli transakcja odczytuje dokument, który został zmodyfikowany poza transakcją, ponownie próbuje wykonać operację ograniczoną liczbę razy, a potem kończy się niepowodzeniem. Aby znaleźć odpowiednie obejście dla agregacji, która wymaga częstszych aktualizacji, zapoznaj się z artykułem o rozproszonych licznikach.
Rozwiązanie: agregacja w czasie pisania za pomocą Cloud Functions
Jeśli transakcje po stronie klienta nie są odpowiednie dla Twojej aplikacji, możesz użyć funkcji w chmurze, aby aktualizować informacje zbiorcze za każdym razem, gdy do restauracji zostanie dodany nowy wynik:
Node.js
exports.aggregateRatings = functions.firestore .document('restaurants/{restId}/ratings/{ratingId}') .onWrite(async (change, context) => { // Get value of the newly added rating const ratingVal = change.after.data().rating; // Get a reference to the restaurant const restRef = db.collection('restaurants').doc(context.params.restId); // Update aggregations in a transaction await db.runTransaction(async (transaction) => { const restDoc = await transaction.get(restRef); // Compute new number of ratings const newNumRatings = restDoc.data().numRatings + 1; // Compute new average rating const oldRatingTotal = restDoc.data().avgRating * restDoc.data().numRatings; const newAvgRating = (oldRatingTotal + ratingVal) / newNumRatings; // Update restaurant info transaction.update(restRef, { avgRating: newAvgRating, numRatings: newNumRatings }); }); });
To rozwiązanie przekierowuje zadania z klienta na funkcję hostowaną, co oznacza, że aplikacja mobilna może dodawać oceny bez oczekiwania na zakończenie transakcji. Kod wykonywany w Cloud Functions nie jest objęty regułami bezpieczeństwa, co oznacza, że nie musisz już przyznawać klientom dostępu do zapisu danych zbiorczych.
Ograniczenia
Korzystanie z Cloud Functions do agregacji pozwala uniknąć niektórych problemów związanych z transakcjami po stronie klienta, ale wiąże się z innymi ograniczeniami:
- Koszt – każda dodana ocena spowoduje wywołanie funkcji Cloud Functions, co może zwiększyć koszty. Więcej informacji znajdziesz na stronie z cenami Cloud Functions.
- Opóźnienie – przeniesienie pracy związanej z zbiorczością do funkcji w Cloud Functions powoduje, że aplikacja nie będzie widzieć zaktualizowanych danych, dopóki funkcja w Cloud Functions nie zakończy wykonywania i klient nie zostanie powiadomiony o nowych danych. W zależności od szybkości funkcji w Cloud Functions może to zająć więcej czasu niż wykonanie transakcji lokalnie.
- Szybkość zapisu – to rozwiązanie może nie działać w przypadku często aktualizowanych agregacji, ponieważ dokumenty w Cloud Firestore można zaktualizować maksymalnie raz na sekundę. Jeśli transakcja odczytuje dokument, który został zmodyfikowany poza transakcją, ponownie próbuje wykonać operację ograniczoną liczbę razy, a potem kończy się niepowodzeniem. Aby znaleźć odpowiednie obejście dla agregacji, która wymaga częstszych aktualizacji, zapoznaj się z artykułem o rozproszonych licznikach.