Android'de Makine Öğrenimi Kiti ile Yüzleri Algılama

Görüntü ve videolardaki yüzleri algılamak için ML Kit'i kullanabilirsiniz.

Başlamadan önce

  1. Henüz yapmadıysanız Firebase'i Android projenize ekleyin.
  2. Modülünüze ML Kit Android kitaplıkları için bağımlılıkları ekleyin (uygulama düzeyinde) Gradle dosyası (genellikle app/build.gradle):
    apply plugin: 'com.android.application'
    apply plugin: 'com.google.gms.google-services'
    
    dependencies {
      // ...
    
      implementation 'com.google.firebase:firebase-ml-vision:24.0.3'
      // If you want to detect face contours (landmark detection and classification
      // don't require this additional model):
      implementation 'com.google.firebase:firebase-ml-vision-face-model:20.0.1'
    }
  3. İsteğe bağlı ancak önerilir: Uygulamanızı otomatik olarak indirilecek şekilde yapılandırın uygulamanız Play Store'dan yüklendikten sonra ML modelini cihaza aktarabilirsiniz.

    Bunu yapmak için aşağıdaki beyanı uygulamanızın AndroidManifest.xml dosyası:

    <application ...>
      ...
      <meta-data
          android:name="com.google.firebase.ml.vision.DEPENDENCIES"
          android:value="face" />
      <!-- To use multiple models: android:value="face,model2,model3" -->
    </application>
    Yükleme zamanı modeli indirmelerini etkinleştirmezseniz model indiremezsiniz. bir sonuç döndürmez.

Giriş resmi kuralları

ML Kit'in yüzleri doğru algılayabilmesi için giriş görüntülerinin yüzler içermesi gerekir temsil edilir. Genel olarak, görmek istediğiniz her yüz en az 100x100 piksel boyutunda olmalıdır. Belirli bir aktiviteyi Yüzlerin sınırları, makine öğrenimi kiti için daha yüksek çözünürlük girişi gerekir: her yüz en az 200x200 piksel olmalıdır.

Gerçek zamanlı bir uygulamada yüzleri algılıyorsanız giriş resimlerinin genel boyutlarını göz önünde bulundurun. Daha küçük resimler daha hızlı işlenir. Bu nedenle, gecikmeyi azaltmak için görüntüleri düşük çözünürlüklerde yakalayın. (yukarıdaki doğruluk şartlarını göz önünde bulundurarak) ve öznenin yüzü resmin olabildiğince büyük kısmını kaplar. Şunlara da bakabilirsiniz: Gerçek zamanlı performansı iyileştirmeye yönelik ipuçları.

Kötü bir resim odağı, doğruluğu azaltabilir. Kabul edilebilir sonuçlar alamıyorsanız kullanıcıdan resmi yeniden çekmesini istemeyi deneyin.

Bir yüzün kameraya göre yönü hangi yüzün üzerinde etkili olabilir Makine Öğrenimi Kiti'nin algıladığı özellikler. Görüntüleyin Yüz Algılama Kavramlar.

1. Yüz algılayıcıyı yapılandırma

Bir resme yüz algılama özelliğini uygulamadan önce, yüz dedektörünün varsayılan ayarlarını seçtikten sonra, bu ayarları FirebaseVisionFaceDetectorOptions nesnesini tanımlayın. Aşağıdaki ayarları değiştirebilirsiniz:

Ayarlar
Performans modu FAST (varsayılan) | ACCURATE

Yüzleri algılarken hızı veya doğruluğu tercih edin.

Önemli noktaları algılama NO_LANDMARKS (varsayılan) | ALL_LANDMARKS

Yüzdeki "önemli noktaları" (gözler, kulaklar, burun), yanak, ağız vb.

Konturları algılama NO_CONTOURS (varsayılan) | ALL_CONTOURS

Yüz özelliklerinin konturlarının algılanıp algılanmayacağı. Kontürler bir görüntüdeki yalnızca en belirgin yüz için algılandı.

Yüzleri sınıflandırma NO_CLASSIFICATIONS (varsayılan) | ALL_CLASSIFICATIONS

Yüzlerin "gülümseyen", ve "gözler açık" gibi.

Minimum yüz boyutu float (varsayılan: 0.1f)

Algılanacak yüzlerin resme göre minimum boyutu.

Yüz izlemeyi etkinleştir false (varsayılan) | true

Aşağıdakileri izlemek için kullanılabilecek bir kimlik atanıp atanmayacağı görüntüler.

Kontür algılama etkinleştirildiğinde yalnızca bir yüzün bu yüzden yüz izleme faydalı sonuçlar üretmez. Bunun için algılama hızını artırmak için iki konturu da etkinleştirmeyin ve özellikleri bulunuyor.

Örneğin:

Java

// High-accuracy landmark detection and face classification
FirebaseVisionFaceDetectorOptions highAccuracyOpts =
        new FirebaseVisionFaceDetectorOptions.Builder()
                .setPerformanceMode(FirebaseVisionFaceDetectorOptions.ACCURATE)
                .setLandmarkMode(FirebaseVisionFaceDetectorOptions.ALL_LANDMARKS)
                .setClassificationMode(FirebaseVisionFaceDetectorOptions.ALL_CLASSIFICATIONS)
                .build();

// Real-time contour detection of multiple faces
FirebaseVisionFaceDetectorOptions realTimeOpts =
        new FirebaseVisionFaceDetectorOptions.Builder()
                .setContourMode(FirebaseVisionFaceDetectorOptions.ALL_CONTOURS)
                .build();

Kotlin+KTX

// High-accuracy landmark detection and face classification
val highAccuracyOpts = FirebaseVisionFaceDetectorOptions.Builder()
        .setPerformanceMode(FirebaseVisionFaceDetectorOptions.ACCURATE)
        .setLandmarkMode(FirebaseVisionFaceDetectorOptions.ALL_LANDMARKS)
        .setClassificationMode(FirebaseVisionFaceDetectorOptions.ALL_CLASSIFICATIONS)
        .build()

// Real-time contour detection of multiple faces
val realTimeOpts = FirebaseVisionFaceDetectorOptions.Builder()
        .setContourMode(FirebaseVisionFaceDetectorOptions.ALL_CONTOURS)
        .build()

2. Yüz algılayıcıyı çalıştırın

Bir resimdeki yüzleri algılamak için FirebaseVisionImage nesnesi oluşturun bir Bitmap, media.Image, ByteBuffer, bayt dizisi veya için geçerlidir. Ardından, FirebaseVisionImage nesnesini FirebaseVisionFaceDetector ürününün detectInImage yöntemi.

Yüz tanıma için, en az şu boyutta bir resim kullanmalısınız: 480x360 piksel. Yüzleri gerçek zamanlı olarak tanıyorsanız, istediğiniz kareleri yakalıyorsunuz. gecikmenin azaltılmasına yardımcı olabilir.

  1. Cihazınızdan bir FirebaseVisionImage nesnesi oluşturun görüntüsüdür.

    • Bir FirebaseVisionImage nesnesi oluşturmak için media.Image nesnesi, örneğin bir media.Image nesnesini ve görüntünün FirebaseVisionImage.fromMediaImage() değerine döndürülüyor.

      URL'yi CameraX kitaplığı, OnImageCapturedListener ve ImageAnalysis.Analyzer sınıfları rotasyon değerini hesaplar gerekir, bu nedenle rotasyonu ML Kit'lerinden birine veya Çağrıdan önce ROTATION_ sabit değer FirebaseVisionImage.fromMediaImage():

      Java

      private class YourAnalyzer implements ImageAnalysis.Analyzer {
      
          private int degreesToFirebaseRotation(int degrees) {
              switch (degrees) {
                  case 0:
                      return FirebaseVisionImageMetadata.ROTATION_0;
                  case 90:
                      return FirebaseVisionImageMetadata.ROTATION_90;
                  case 180:
                      return FirebaseVisionImageMetadata.ROTATION_180;
                  case 270:
                      return FirebaseVisionImageMetadata.ROTATION_270;
                  default:
                      throw new IllegalArgumentException(
                              "Rotation must be 0, 90, 180, or 270.");
              }
          }
      
          @Override
          public void analyze(ImageProxy imageProxy, int degrees) {
              if (imageProxy == null || imageProxy.getImage() == null) {
                  return;
              }
              Image mediaImage = imageProxy.getImage();
              int rotation = degreesToFirebaseRotation(degrees);
              FirebaseVisionImage image =
                      FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
              // Pass image to an ML Kit Vision API
              // ...
          }
      }

      Kotlin+KTX

      private class YourImageAnalyzer : ImageAnalysis.Analyzer {
          private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) {
              0 -> FirebaseVisionImageMetadata.ROTATION_0
              90 -> FirebaseVisionImageMetadata.ROTATION_90
              180 -> FirebaseVisionImageMetadata.ROTATION_180
              270 -> FirebaseVisionImageMetadata.ROTATION_270
              else -> throw Exception("Rotation must be 0, 90, 180, or 270.")
          }
      
          override fun analyze(imageProxy: ImageProxy?, degrees: Int) {
              val mediaImage = imageProxy?.image
              val imageRotation = degreesToFirebaseRotation(degrees)
              if (mediaImage != null) {
                  val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation)
                  // Pass image to an ML Kit Vision API
                  // ...
              }
          }
      }

      Resmin döndürmesini sağlayan bir kamera kitaplığı kullanmıyorsanız cihazın dönüşüne ve kameranın yönüne göre hesaplanabilir cihazdaki sensör:

      Java

      private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
      static {
          ORIENTATIONS.append(Surface.ROTATION_0, 90);
          ORIENTATIONS.append(Surface.ROTATION_90, 0);
          ORIENTATIONS.append(Surface.ROTATION_180, 270);
          ORIENTATIONS.append(Surface.ROTATION_270, 180);
      }
      
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      private int getRotationCompensation(String cameraId, Activity activity, Context context)
              throws CameraAccessException {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
          int rotationCompensation = ORIENTATIONS.get(deviceRotation);
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE);
          int sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION);
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360;
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          int result;
          switch (rotationCompensation) {
              case 0:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  break;
              case 90:
                  result = FirebaseVisionImageMetadata.ROTATION_90;
                  break;
              case 180:
                  result = FirebaseVisionImageMetadata.ROTATION_180;
                  break;
              case 270:
                  result = FirebaseVisionImageMetadata.ROTATION_270;
                  break;
              default:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  Log.e(TAG, "Bad rotation value: " + rotationCompensation);
          }
          return result;
      }

      Kotlin+KTX

      private val ORIENTATIONS = SparseIntArray()
      
      init {
          ORIENTATIONS.append(Surface.ROTATION_0, 90)
          ORIENTATIONS.append(Surface.ROTATION_90, 0)
          ORIENTATIONS.append(Surface.ROTATION_180, 270)
          ORIENTATIONS.append(Surface.ROTATION_270, 180)
      }
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      @Throws(CameraAccessException::class)
      private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          val deviceRotation = activity.windowManager.defaultDisplay.rotation
          var rotationCompensation = ORIENTATIONS.get(deviceRotation)
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager
          val sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION)!!
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          val result: Int
          when (rotationCompensation) {
              0 -> result = FirebaseVisionImageMetadata.ROTATION_0
              90 -> result = FirebaseVisionImageMetadata.ROTATION_90
              180 -> result = FirebaseVisionImageMetadata.ROTATION_180
              270 -> result = FirebaseVisionImageMetadata.ROTATION_270
              else -> {
                  result = FirebaseVisionImageMetadata.ROTATION_0
                  Log.e(TAG, "Bad rotation value: $rotationCompensation")
              }
          }
          return result
      }

      Ardından, media.Image nesnesini ve rotasyon değerini FirebaseVisionImage.fromMediaImage() değerine ayarlayın:

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);

      Kotlin+KTX

      val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
    • Dosya URI'sinden bir FirebaseVisionImage nesnesi oluşturmak için uygulama bağlamını ve dosya URI'sini FirebaseVisionImage.fromFilePath(). Bu özellik, kullanıcıdan seçim yapmasını istemek için bir ACTION_GET_CONTENT niyeti kullanın galeri uygulamasından bir resim.

      Java

      FirebaseVisionImage image;
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri);
      } catch (IOException e) {
          e.printStackTrace();
      }

      Kotlin+KTX

      val image: FirebaseVisionImage
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri)
      } catch (e: IOException) {
          e.printStackTrace()
      }
    • Bir FirebaseVisionImage nesnesi oluşturmak için ByteBuffer veya bir bayt dizisi, önce görüntüyü hesaplayın media.Image girişi için yukarıda açıklandığı gibi döndürülmesini sağlayın.

      Ardından, bir FirebaseVisionImageMetadata nesnesi oluşturun yüksekliğini, genişliğini, renk kodlaması biçimini ve ve rotasyon:

      Java

      FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder()
              .setWidth(480)   // 480x360 is typically sufficient for
              .setHeight(360)  // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build();

      Kotlin+KTX

      val metadata = FirebaseVisionImageMetadata.Builder()
              .setWidth(480) // 480x360 is typically sufficient for
              .setHeight(360) // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build()

      Aşağıdakini oluşturmak için arabelleği veya diziyi ve meta veri nesnesini kullanın: FirebaseVisionImage nesne:

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata);
      // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);

      Kotlin+KTX

      val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata)
      // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
    • Bir FirebaseVisionImage nesnesi oluşturmak için Bitmap nesne:

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);

      Kotlin+KTX

      val image = FirebaseVisionImage.fromBitmap(bitmap)
      Bitmap nesnesi tarafından temsil edilen resim, dik olmalıdır, ek döndürme gerekmez.
  2. FirebaseVisionFaceDetector öğesinin bir örneğini alın:

    Java

    FirebaseVisionFaceDetector detector = FirebaseVision.getInstance()
            .getVisionFaceDetector(options);

    Kotlin+KTX

    val detector = FirebaseVision.getInstance()
            .getVisionFaceDetector(options)
  3. Son olarak, resmi detectInImage yöntemine iletin:

    Java

    Task<List<FirebaseVisionFace>> result =
            detector.detectInImage(image)
                    .addOnSuccessListener(
                            new OnSuccessListener<List<FirebaseVisionFace>>() {
                                @Override
                                public void onSuccess(List<FirebaseVisionFace> faces) {
                                    // Task completed successfully
                                    // ...
                                }
                            })
                    .addOnFailureListener(
                            new OnFailureListener() {
                                @Override
                                public void onFailure(@NonNull Exception e) {
                                    // Task failed with an exception
                                    // ...
                                }
                            });

    Kotlin+KTX

    val result = detector.detectInImage(image)
            .addOnSuccessListener { faces ->
                // Task completed successfully
                // ...
            }
            .addOnFailureListener { e ->
                // Task failed with an exception
                // ...
            }

3. Algılanan yüzler hakkında bilgi al

Yüz tanıma işlemi başarılı olursa, yüz tanıma FirebaseVisionFace nesne başarıya aktarılacak dinleyicidir. Her FirebaseVisionFace nesnesi, algılanan bir yüzü temsil eder bir resimdir. Her yüz için sınırlayıcı koordinatlarını giriş bölümünden alabilirsiniz yanı sıra yüz dedektörünü yapılandırdığınız diğer bilgileri içeren bulabilirsiniz. Örneğin:

Java

for (FirebaseVisionFace face : faces) {
    Rect bounds = face.getBoundingBox();
    float rotY = face.getHeadEulerAngleY();  // Head is rotated to the right rotY degrees
    float rotZ = face.getHeadEulerAngleZ();  // Head is tilted sideways rotZ degrees

    // If landmark detection was enabled (mouth, ears, eyes, cheeks, and
    // nose available):
    FirebaseVisionFaceLandmark leftEar = face.getLandmark(FirebaseVisionFaceLandmark.LEFT_EAR);
    if (leftEar != null) {
        FirebaseVisionPoint leftEarPos = leftEar.getPosition();
    }

    // If contour detection was enabled:
    List<FirebaseVisionPoint> leftEyeContour =
            face.getContour(FirebaseVisionFaceContour.LEFT_EYE).getPoints();
    List<FirebaseVisionPoint> upperLipBottomContour =
            face.getContour(FirebaseVisionFaceContour.UPPER_LIP_BOTTOM).getPoints();

    // If classification was enabled:
    if (face.getSmilingProbability() != FirebaseVisionFace.UNCOMPUTED_PROBABILITY) {
        float smileProb = face.getSmilingProbability();
    }
    if (face.getRightEyeOpenProbability() != FirebaseVisionFace.UNCOMPUTED_PROBABILITY) {
        float rightEyeOpenProb = face.getRightEyeOpenProbability();
    }

    // If face tracking was enabled:
    if (face.getTrackingId() != FirebaseVisionFace.INVALID_ID) {
        int id = face.getTrackingId();
    }
}

Kotlin+KTX

for (face in faces) {
    val bounds = face.boundingBox
    val rotY = face.headEulerAngleY // Head is rotated to the right rotY degrees
    val rotZ = face.headEulerAngleZ // Head is tilted sideways rotZ degrees

    // If landmark detection was enabled (mouth, ears, eyes, cheeks, and
    // nose available):
    val leftEar = face.getLandmark(FirebaseVisionFaceLandmark.LEFT_EAR)
    leftEar?.let {
        val leftEarPos = leftEar.position
    }

    // If contour detection was enabled:
    val leftEyeContour = face.getContour(FirebaseVisionFaceContour.LEFT_EYE).points
    val upperLipBottomContour = face.getContour(FirebaseVisionFaceContour.UPPER_LIP_BOTTOM).points

    // If classification was enabled:
    if (face.smilingProbability != FirebaseVisionFace.UNCOMPUTED_PROBABILITY) {
        val smileProb = face.smilingProbability
    }
    if (face.rightEyeOpenProbability != FirebaseVisionFace.UNCOMPUTED_PROBABILITY) {
        val rightEyeOpenProb = face.rightEyeOpenProbability
    }

    // If face tracking was enabled:
    if (face.trackingId != FirebaseVisionFace.INVALID_ID) {
        val id = face.trackingId
    }
}

Yüz kontur örneği

Yüz kontur algılamayı etkinleştirdiğinizde, yüz konturu algılamayı etkinleştirdiğinizde Algılanan her yüz özelliği. Bu noktalar, noktanın şeklini özelliğini kullanabilirsiniz. Yüze bakın Kontürlerin nasıl göründüğüyle ilgili ayrıntılar için Algılama Kavramlarına Genel Bakış temsil edilir.

Aşağıdaki resimde bu noktaların bir yüzle nasıl eşlendiği gösterilmektedir ( büyütmek için resmi kullanabilirsiniz):

Gerçek zamanlı yüz algılama

Yüz algılamayı gerçek zamanlı bir uygulamada kullanmak istiyorsanız şuradaki talimatları uygulayın: talimatları uygulayın:

  • Aşağıdakilerden birini kullanmak için yüz algılayıcıyı yapılandırın yalnızca yüz kontur algılama veya sınıflandırma ve önemli nokta algılama özellikleri kullanılabilir.

    Kontur algılama
    Önemli nokta algılama
    Sınıflandırma
    Önemli nokta algılama ve sınıflandırma
    Kontur algılama ve önemli nokta algılama
    Kontur algılama ve sınıflandırma
    Kontur algılama, önemli nokta algılama ve sınıflandırma

  • FAST modunu etkinleştir (varsayılan olarak etkindir).

  • Görüntüleri daha düşük çözünürlükte çekmeyi düşünün. Ancak unutmayın, resim boyutu şartlarına tabidir.

  • Algılayıcıya yapılan çağrıları hızlandırın. Yeni bir video karesi kullanılabilir durumdaysa çerçeveyi bırakın.
  • Algılayıcının çıkışını üzerine grafik yerleştirmek için kullanıyorsanız giriş görüntüsünü kullanın, önce ML Kit'ten sonucu alın ve ardından görüntüyü oluşturun tek bir adımda yapabilirsiniz. Bu şekilde, öğeleri ekran yüzeyinde her giriş karesi için yalnızca bir kez.
  • Camera2 API'sini kullanıyorsanız görüntüleri şurada yakalayın: ImageFormat.YUV_420_888 biçimindedir.

    Eski Kamera API'sini kullanıyorsanız görüntüleri şurada yakalayın: ImageFormat.NV21 biçimindedir.