Rilevamento e tracciamento di oggetti con ML Kit su Android

Puoi utilizzare ML Kit per rilevare e monitorare gli oggetti nei fotogrammi di un video.

Quando passi le immagini di ML Kit, ML Kit restituisce, per ogni immagine, un elenco di fino a cinque oggetti rilevati e la loro posizione nell'immagine. Quando vengono rilevati oggetti negli stream video, ogni oggetto ha un ID che puoi utilizzare per monitorarlo nelle immagini. Se vuoi, puoi anche attivare la classificazione approssimativa degli oggetti, che etichetta gli oggetti con descrizioni di categorie generali.

Prima di iniziare

  1. Se non lo hai già fatto, aggiungi Firebase al tuo progetto Android.
  2. Aggiungi le dipendenze per le librerie Android di ML Kit al file Gradle del tuo modulo (a livello di app) (di solito app/build.gradle):
    apply plugin: 'com.android.application'
    apply plugin: 'com.google.gms.google-services'
    
    dependencies {
      // ...
    
      implementation 'com.google.firebase:firebase-ml-vision:24.0.3'
      implementation 'com.google.firebase:firebase-ml-vision-object-detection-model:19.0.6'
    }

1. Configura il rilevatore di oggetti

Per iniziare a rilevare e monitorare gli oggetti, crea prima un'istanza di FirebaseVisionObjectDetector, specificando facoltativamente le impostazioni del rilevatore che vuoi modificare rispetto a quelle predefinite.

  1. Configura il rilevatore di oggetti per il tuo caso d'uso con un oggetto FirebaseVisionObjectDetectorOptions. Puoi modificare le seguenti impostazioni:

    Impostazioni del rilevatore di oggetti
    Modalità di rilevamento STREAM_MODE (valore predefinito) | SINGLE_IMAGE_MODE

    In STREAM_MODE (valore predefinito), il rilevatore di oggetti viene eseguito con bassa latenza, ma potrebbe produrre risultati incompleti (ad esempio caselle delimitanti o etichette di categoria non specificate) nelle prime invocazioni del rilevatore. Inoltre, in STREAM_MODE, il rilevatore assegna agli oggetti ID di monitoraggio che puoi utilizzare per monitorare gli oggetti nei fotogrammi. Utilizza questa modalità quando vuoi monitorare gli oggetti o quando è importante una bassa latenza, ad esempio durante l'elaborazione di stream video in tempo reale.

    In SINGLE_IMAGE_MODE, il rilevatore di oggetti attende fino a quando non sono disponibili la casella delimitante di un oggetto rilevato e (se hai attivato la classificazione) l'etichetta della categoria prima di restituire un risultato. Di conseguenza, la latenza del rilevamento è potenzialmente più elevata. Inoltre, in SINGLE_IMAGE_MODE gli ID monitoraggio non vengono assegnati. Utilizza questa modalità se la latenza non è fondamentale e non vuoi gestire risultati parziali.

    Rileva e monitora più oggetti false (valore predefinito) | true

    Indica se rilevare e monitorare fino a cinque oggetti o solo l'oggetto più prominente (impostazione predefinita).

    Classificare gli oggetti false (valore predefinito) | true

    Indica se classificare o meno gli oggetti rilevati in categorie approssimative. Se abilitato, il rilevatore di oggetti classifica gli oggetti nelle seguenti categorie: abbigliamento, cibo, articoli per la casa, luoghi, piante e sconosciuto.

    L'API di rilevamento e monitoraggio degli oggetti è ottimizzata per questi due casi d'uso principali:

    • Rilevamento e monitoraggio in tempo reale dell'oggetto più in evidenza nel mirino della fotocamera
    • Rilevamento di più oggetti da un'immagine statica

    Per configurare l'API per questi casi d'uso:

    Java

    // Live detection and tracking
    FirebaseVisionObjectDetectorOptions options =
            new FirebaseVisionObjectDetectorOptions.Builder()
                    .setDetectorMode(FirebaseVisionObjectDetectorOptions.STREAM_MODE)
                    .enableClassification()  // Optional
                    .build();
    
    // Multiple object detection in static images
    FirebaseVisionObjectDetectorOptions options =
            new FirebaseVisionObjectDetectorOptions.Builder()
                    .setDetectorMode(FirebaseVisionObjectDetectorOptions.SINGLE_IMAGE_MODE)
                    .enableMultipleObjects()
                    .enableClassification()  // Optional
                    .build();
    

    Kotlin

    // Live detection and tracking
    val options = FirebaseVisionObjectDetectorOptions.Builder()
            .setDetectorMode(FirebaseVisionObjectDetectorOptions.STREAM_MODE)
            .enableClassification()  // Optional
            .build()
    
    // Multiple object detection in static images
    val options = FirebaseVisionObjectDetectorOptions.Builder()
            .setDetectorMode(FirebaseVisionObjectDetectorOptions.SINGLE_IMAGE_MODE)
            .enableMultipleObjects()
            .enableClassification()  // Optional
            .build()
    
  2. Recupera un'istanza di FirebaseVisionObjectDetector:

    Java

    FirebaseVisionObjectDetector objectDetector =
            FirebaseVision.getInstance().getOnDeviceObjectDetector();
    
    // Or, to change the default settings:
    FirebaseVisionObjectDetector objectDetector =
            FirebaseVision.getInstance().getOnDeviceObjectDetector(options);
    

    Kotlin

    val objectDetector = FirebaseVision.getInstance().getOnDeviceObjectDetector()
    
    // Or, to change the default settings:
    val objectDetector = FirebaseVision.getInstance().getOnDeviceObjectDetector(options)
    

2. Esegui il rilevatore di oggetti

Per rilevare e monitorare gli oggetti, passa le immagini al metodo processImage() dell'istanza processImage().FirebaseVisionObjectDetector

Per ogni frame di video o immagine in una sequenza:

  1. Crea un oggetto FirebaseVisionImage dall'immagine.

    • Per creare un oggetto FirebaseVisionImage da un oggetto media.Image, ad esempio quando acquisisci un'immagine dalla fotocamera di un dispositivo, passa l'oggetto media.Image e la rotazione dell'immagine a FirebaseVisionImage.fromMediaImage().

      Se utilizzi la libreria CameraX, le classi OnImageCapturedListener e ImageAnalysis.Analyzer calcolano il valore di rotazione per te, quindi devi solo convertire la rotazione in una delle costanti ROTATION_ di ML Kit prima di chiamare FirebaseVisionImage.fromMediaImage():

      Java

      private class YourAnalyzer implements ImageAnalysis.Analyzer {
      
          private int degreesToFirebaseRotation(int degrees) {
              switch (degrees) {
                  case 0:
                      return FirebaseVisionImageMetadata.ROTATION_0;
                  case 90:
                      return FirebaseVisionImageMetadata.ROTATION_90;
                  case 180:
                      return FirebaseVisionImageMetadata.ROTATION_180;
                  case 270:
                      return FirebaseVisionImageMetadata.ROTATION_270;
                  default:
                      throw new IllegalArgumentException(
                              "Rotation must be 0, 90, 180, or 270.");
              }
          }
      
          @Override
          public void analyze(ImageProxy imageProxy, int degrees) {
              if (imageProxy == null || imageProxy.getImage() == null) {
                  return;
              }
              Image mediaImage = imageProxy.getImage();
              int rotation = degreesToFirebaseRotation(degrees);
              FirebaseVisionImage image =
                      FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
              // Pass image to an ML Kit Vision API
              // ...
          }
      }

      Kotlin

      private class YourImageAnalyzer : ImageAnalysis.Analyzer {
          private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) {
              0 -> FirebaseVisionImageMetadata.ROTATION_0
              90 -> FirebaseVisionImageMetadata.ROTATION_90
              180 -> FirebaseVisionImageMetadata.ROTATION_180
              270 -> FirebaseVisionImageMetadata.ROTATION_270
              else -> throw Exception("Rotation must be 0, 90, 180, or 270.")
          }
      
          override fun analyze(imageProxy: ImageProxy?, degrees: Int) {
              val mediaImage = imageProxy?.image
              val imageRotation = degreesToFirebaseRotation(degrees)
              if (mediaImage != null) {
                  val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation)
                  // Pass image to an ML Kit Vision API
                  // ...
              }
          }
      }

      Se non utilizzi una libreria della fotocamera che ti fornisca la rotazione dell'immagine, puoi calcolarla dalla rotazione del dispositivo e dall'orientamento del sensore della fotocamera al suo interno:

      Java

      private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
      static {
          ORIENTATIONS.append(Surface.ROTATION_0, 90);
          ORIENTATIONS.append(Surface.ROTATION_90, 0);
          ORIENTATIONS.append(Surface.ROTATION_180, 270);
          ORIENTATIONS.append(Surface.ROTATION_270, 180);
      }
      
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      private int getRotationCompensation(String cameraId, Activity activity, Context context)
              throws CameraAccessException {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
          int rotationCompensation = ORIENTATIONS.get(deviceRotation);
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE);
          int sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION);
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360;
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          int result;
          switch (rotationCompensation) {
              case 0:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  break;
              case 90:
                  result = FirebaseVisionImageMetadata.ROTATION_90;
                  break;
              case 180:
                  result = FirebaseVisionImageMetadata.ROTATION_180;
                  break;
              case 270:
                  result = FirebaseVisionImageMetadata.ROTATION_270;
                  break;
              default:
                  result = FirebaseVisionImageMetadata.ROTATION_0;
                  Log.e(TAG, "Bad rotation value: " + rotationCompensation);
          }
          return result;
      }

      Kotlin

      private val ORIENTATIONS = SparseIntArray()
      
      init {
          ORIENTATIONS.append(Surface.ROTATION_0, 90)
          ORIENTATIONS.append(Surface.ROTATION_90, 0)
          ORIENTATIONS.append(Surface.ROTATION_180, 270)
          ORIENTATIONS.append(Surface.ROTATION_270, 180)
      }
      /**
       * Get the angle by which an image must be rotated given the device's current
       * orientation.
       */
      @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
      @Throws(CameraAccessException::class)
      private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int {
          // Get the device's current rotation relative to its "native" orientation.
          // Then, from the ORIENTATIONS table, look up the angle the image must be
          // rotated to compensate for the device's rotation.
          val deviceRotation = activity.windowManager.defaultDisplay.rotation
          var rotationCompensation = ORIENTATIONS.get(deviceRotation)
      
          // On most devices, the sensor orientation is 90 degrees, but for some
          // devices it is 270 degrees. For devices with a sensor orientation of
          // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
          val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager
          val sensorOrientation = cameraManager
                  .getCameraCharacteristics(cameraId)
                  .get(CameraCharacteristics.SENSOR_ORIENTATION)!!
          rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360
      
          // Return the corresponding FirebaseVisionImageMetadata rotation value.
          val result: Int
          when (rotationCompensation) {
              0 -> result = FirebaseVisionImageMetadata.ROTATION_0
              90 -> result = FirebaseVisionImageMetadata.ROTATION_90
              180 -> result = FirebaseVisionImageMetadata.ROTATION_180
              270 -> result = FirebaseVisionImageMetadata.ROTATION_270
              else -> {
                  result = FirebaseVisionImageMetadata.ROTATION_0
                  Log.e(TAG, "Bad rotation value: $rotationCompensation")
              }
          }
          return result
      }

      Poi, passa l'oggetto media.Image e il valore di rotazione a FirebaseVisionImage.fromMediaImage():

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);

      Kotlin

      val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
    • Per creare un oggetto FirebaseVisionImage da un URI file, passa il contesto dell'app e l'URI file a FirebaseVisionImage.fromFilePath(). Questa operazione è utile quando utilizzi un'intenzione ACTION_GET_CONTENT per chiedere all'utente di selezionare un'immagine dalla sua app Galleria.

      Java

      FirebaseVisionImage image;
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri);
      } catch (IOException e) {
          e.printStackTrace();
      }

      Kotlin

      val image: FirebaseVisionImage
      try {
          image = FirebaseVisionImage.fromFilePath(context, uri)
      } catch (e: IOException) {
          e.printStackTrace()
      }
    • Per creare un oggetto FirebaseVisionImage da un ByteBuffer o da un array di byte, calcola prima la rotazione dell'immagine come descritto sopra per l'input media.Image.

      Quindi, crea un oggetto FirebaseVisionImageMetadata contenente l'altezza, la larghezza, il formato di codifica dei colori e la rotazione dell'immagine:

      Java

      FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder()
              .setWidth(480)   // 480x360 is typically sufficient for
              .setHeight(360)  // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build();

      Kotlin

      val metadata = FirebaseVisionImageMetadata.Builder()
              .setWidth(480) // 480x360 is typically sufficient for
              .setHeight(360) // image recognition
              .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
              .setRotation(rotation)
              .build()

      Utilizza l'array o il buffer e l'oggetto dei metadati per creare un oggetto FirebaseVisionImage:

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata);
      // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);

      Kotlin

      val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata)
      // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
    • Per creare un oggetto FirebaseVisionImage da un oggetto Bitmap:

      Java

      FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);

      Kotlin

      val image = FirebaseVisionImage.fromBitmap(bitmap)
      L'immagine rappresentata dall'oggetto Bitmap deve essere in verticale, senza alcuna rotazione aggiuntiva.
  2. Passa l'immagine al metodo processImage():

    Java

    objectDetector.processImage(image)
            .addOnSuccessListener(
                    new OnSuccessListener<List<FirebaseVisionObject>>() {
                        @Override
                        public void onSuccess(List<FirebaseVisionObject> detectedObjects) {
                            // Task completed successfully
                            // ...
                        }
                    })
            .addOnFailureListener(
                    new OnFailureListener() {
                        @Override
                        public void onFailure(@NonNull Exception e) {
                            // Task failed with an exception
                            // ...
                        }
                    });
    

    Kotlin

    objectDetector.processImage(image)
            .addOnSuccessListener { detectedObjects ->
                // Task completed successfully
                // ...
            }
            .addOnFailureListener { e ->
                // Task failed with an exception
                // ...
            }
    
  3. Se la chiamata a processImage() va a buon fine, un elenco di FirebaseVisionObject viene passato all'ascoltatore di eventi di successo.

    Ogni FirebaseVisionObject contiene le seguenti proprietà:

    Riquadro di delimitazione Un Rect che indica la posizione dell'oggetto nell'immagine.
    ID monitoraggio Un numero intero che identifica l'oggetto nelle immagini. Valore nullo in SINGLE_IMAGE_MODE.
    Categoria La categoria approssimativa dell'oggetto. Se il rilevatore di oggetti non ha attivato la classificazione, il valore è sempre FirebaseVisionObject.CATEGORY_UNKNOWN.
    Affidabilità Il valore di confidenza della classificazione dell'oggetto. Se il rilevatore di oggetti non ha la classificazione abilitata o se l'oggetto è classificato come sconosciuto, il valore è null.

    Java

    // The list of detected objects contains one item if multiple object detection wasn't enabled.
    for (FirebaseVisionObject obj : detectedObjects) {
        Integer id = obj.getTrackingId();
        Rect bounds = obj.getBoundingBox();
    
        // If classification was enabled:
        int category = obj.getClassificationCategory();
        Float confidence = obj.getClassificationConfidence();
    }
    

    Kotlin

    // The list of detected objects contains one item if multiple object detection wasn't enabled.
    for (obj in detectedObjects) {
        val id = obj.trackingId       // A number that identifies the object across images
        val bounds = obj.boundingBox  // The object's position in the image
    
        // If classification was enabled:
        val category = obj.classificationCategory
        val confidence = obj.classificationConfidence
    }
    

Miglioramento dell'usabilità e delle prestazioni

Per un'esperienza utente ottimale, segui queste linee guida nella tua app:

  • Il rilevamento degli oggetti dipende dalla complessità visiva dell'oggetto. Gli oggetti con un numero ridotto di caratteristiche visive potrebbero dover occupare una parte più ampia dell'immagine per essere rilevati. Fornisci agli utenti indicazioni su come acquisire input che funzionino bene con il tipo di oggetti che vuoi rilevare.
  • Quando utilizzi la classificazione, se vuoi rilevare oggetti che non rientrano chiaramente nelle categorie supportate, implementa un'elaborazione speciale per gli oggetti sconosciuti.

Dai un'occhiata anche all' [app di ML Kit Material Design][showcase-link]{: .external } e alla raccolta di pattern per le funzionalità basate sul machine learning di Material Design.

Quando utilizzi la modalità di streaming in un'applicazione in tempo reale, segui queste linee guida per ottenere le migliori frequenze frame:

  • Non utilizzare il rilevamento di più oggetti in modalità di streaming, in quanto la maggior parte dei dispositivi non sarà in grado di produrre framerate adeguati.

  • Disattiva la classificazione se non ti serve.

  • Regola le chiamate al rilevatore. Se un nuovo frame video diventa disponibile mentre il rilevatore è in esecuzione, inseriscilo.
  • Se utilizzi l'output del rilevatore per sovrapporre la grafica all'immagine di input, ottieni prima il risultato da ML Kit, poi esegui il rendering dell'immagine e la sovrapposizione in un unico passaggio. In questo modo, esegui il rendering sulla superficie di visualizzazione solo una volta per ogni frame di input.
  • Se utilizzi l'API Camera2, acquisisci le immagini in formato ImageFormat.YUV_420_888.

    Se utilizzi la precedente API Camera, acquisisci le immagini in formato ImageFormat.NV21.