Помечайте изображения с помощью модели, обученной AutoML, на Android

После обучения собственной модели с помощью AutoML Vision Edge вы сможете использовать ее в своем приложении для маркировки изображений.

Прежде чем начать

  1. Если вы еще этого не сделали, добавьте Firebase в свой Android-проект .
  2. Добавьте зависимости для библиотек ML Kit Android в файл Gradle вашего модуля (уровня приложения) (обычно app/build.gradle ):
    apply plugin: 'com.android.application'
    apply plugin: 'com.google.gms.google-services'
    
    dependencies {
      // ...
    
      implementation 'com.google.firebase:firebase-ml-vision:24.0.3'
      implementation 'com.google.firebase:firebase-ml-vision-automl:18.0.5'
    }

1. Загрузите модель

ML Kit запускает модели, созданные AutoML, на устройстве. Однако вы можете настроить ML Kit для удалённой загрузки модели из Firebase, из локального хранилища или обоими способами.

Разместив модель на Firebase, вы можете обновлять ее, не выпуская новую версию приложения, а также использовать Remote Config и A/B Testing для динамического предоставления различных моделей различным группам пользователей.

Если вы решите предоставить модель, разместив её в Firebase и не включив её в пакет приложения, вы можете уменьшить размер загружаемого файла. Однако имейте в виду, что если модель не включена в пакет приложения, все функции, связанные с моделью, будут недоступны до тех пор, пока приложение не загрузит её в первый раз.

Объединив модель с приложением, вы можете гарантировать, что функции машинного обучения вашего приложения продолжат работать, даже если модель, размещенная в Firebase, недоступна.

Настройте источник модели, размещенный в Firebase

Чтобы использовать удаленно размещенную модель, создайте объект FirebaseAutoMLRemoteModel , указав имя, которое вы присвоили модели при ее публикации:

Java

// Specify the name you assigned in the Firebase console.
FirebaseAutoMLRemoteModel remoteModel =
    new FirebaseAutoMLRemoteModel.Builder("your_remote_model").build();

Kotlin

// Specify the name you assigned in the Firebase console.
val remoteModel = FirebaseAutoMLRemoteModel.Builder("your_remote_model").build()

Затем запустите задачу загрузки модели, указав условия, при которых она будет разрешена. Если модели нет на устройстве или доступна более новая версия, задача асинхронно загрузит её из Firebase:

Java

FirebaseModelDownloadConditions conditions = new FirebaseModelDownloadConditions.Builder()
        .requireWifi()
        .build();
FirebaseModelManager.getInstance().download(remoteModel, conditions)
        .addOnCompleteListener(new OnCompleteListener<Void>() {
            @Override
            public void onComplete(@NonNull Task<Void> task) {
                // Success.
            }
        });

Kotlin

val conditions = FirebaseModelDownloadConditions.Builder()
    .requireWifi()
    .build()
FirebaseModelManager.getInstance().download(remoteModel, conditions)
    .addOnCompleteListener {
        // Success.
    }

Многие приложения запускают задачу загрузки в своем коде инициализации, но вы можете сделать это в любой момент до того, как вам понадобится использовать модель.

Настройте локальный источник модели

Чтобы связать модель с вашим приложением:

  1. Извлеките модель и её метаданные из ZIP-архива, скачанного из консоли Firebase . Рекомендуем использовать файлы в том виде, в котором вы их скачали, без изменений (включая названия файлов).
  2. Включите вашу модель и ее файлы метаданных в пакет вашего приложения:

    1. Если в вашем проекте нет папки с ресурсами, создайте ее, щелкнув правой кнопкой мыши папку app/ и выбрав Создать > Папка > Папка ресурсов .
    2. Создайте подпапку в папке «Assets» для хранения файлов модели.
    3. Скопируйте файлы model.tflite , dict.txt и manifest.json в подпапку (все три файла должны находиться в одной папке).
  3. Добавьте следующее в файл build.gradle вашего приложения, чтобы Gradle не сжимал файл модели при сборке приложения:
    android {
        // ...
        aaptOptions {
            noCompress "tflite"
        }
    }
    
    Файл модели будет включен в пакет приложения и доступен ML Kit как необработанный ресурс.
  4. Создайте объект FirebaseAutoMLLocalModel , указав путь к файлу манифеста модели:

    Java

    FirebaseAutoMLLocalModel localModel = new FirebaseAutoMLLocalModel.Builder()
            .setAssetFilePath("manifest.json")
            .build();
    

    Kotlin

    val localModel = FirebaseAutoMLLocalModel.Builder()
            .setAssetFilePath("manifest.json")
            .build()
    

Создайте маркировщик изображений на основе вашей модели

После настройки источников модели создайте объект FirebaseVisionImageLabeler из одного из них.

Если у вас есть только локально упакованная модель, просто создайте маркировщик из объекта FirebaseAutoMLLocalModel и настройте требуемый пороговый показатель уверенности (см. раздел Оценка модели ):

Java

FirebaseVisionImageLabeler labeler;
try {
    FirebaseVisionOnDeviceAutoMLImageLabelerOptions options =
            new FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder(localModel)
                    .setConfidenceThreshold(0.0f)  // Evaluate your model in the Firebase console
                                                   // to determine an appropriate value.
                    .build();
    labeler = FirebaseVision.getInstance().getOnDeviceAutoMLImageLabeler(options);
} catch (FirebaseMLException e) {
    // ...
}

Kotlin

val options = FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder(localModel)
    .setConfidenceThreshold(0)  // Evaluate your model in the Firebase console
                                // to determine an appropriate value.
    .build()
val labeler = FirebaseVision.getInstance().getOnDeviceAutoMLImageLabeler(options)

Если у вас есть удалённо размещённая модель, перед её запуском необходимо убедиться, что она загружена. Вы можете проверить статус задачи загрузки модели с помощью метода isModelDownloaded() менеджера моделей.

Хотя вам нужно подтвердить это только перед запуском маркировщика, если у вас есть как удаленно размещенная модель, так и локально упакованная модель, может иметь смысл выполнить эту проверку при создании экземпляра маркировщика изображений: создать маркировщик из удаленной модели, если она была загружена, и из локальной модели в противном случае.

Java

FirebaseModelManager.getInstance().isModelDownloaded(remoteModel)
        .addOnSuccessListener(new OnSuccessListener<Boolean>() {
            @Override
            public void onSuccess(Boolean isDownloaded) {
                FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder optionsBuilder;
                if (isDownloaded) {
                    optionsBuilder = new FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder(remoteModel);
                } else {
                    optionsBuilder = new FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder(localModel);
                }
                FirebaseVisionOnDeviceAutoMLImageLabelerOptions options = optionsBuilder
                        .setConfidenceThreshold(0.0f)  // Evaluate your model in the Firebase console
                                                       // to determine an appropriate threshold.
                        .build();

                FirebaseVisionImageLabeler labeler;
                try {
                    labeler = FirebaseVision.getInstance().getOnDeviceAutoMLImageLabeler(options);
                } catch (FirebaseMLException e) {
                    // Error.
                }
            }
        });

Kotlin

FirebaseModelManager.getInstance().isModelDownloaded(remoteModel)
    .addOnSuccessListener { isDownloaded -> 
    val optionsBuilder =
        if (isDownloaded) {
            FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder(remoteModel)
        } else {
            FirebaseVisionOnDeviceAutoMLImageLabelerOptions.Builder(localModel)
        }
    // Evaluate your model in the Firebase console to determine an appropriate threshold.
    val options = optionsBuilder.setConfidenceThreshold(0.0f).build()
    val labeler = FirebaseVision.getInstance().getOnDeviceAutoMLImageLabeler(options)
}

Если у вас есть только удалённо размещённая модель, следует отключить связанные с ней функции (например, сделать её серой или скрыть часть пользовательского интерфейса) до подтверждения загрузки модели. Это можно сделать, добавив прослушиватель к методу download() менеджера моделей:

Java

FirebaseModelManager.getInstance().download(remoteModel, conditions)
        .addOnSuccessListener(new OnSuccessListener<Void>() {
            @Override
            public void onSuccess(Void v) {
              // Download complete. Depending on your app, you could enable
              // the ML feature, or switch from the local model to the remote
              // model, etc.
            }
        });

Kotlin

FirebaseModelManager.getInstance().download(remoteModel, conditions)
    .addOnCompleteListener {
        // Download complete. Depending on your app, you could enable the ML
        // feature, or switch from the local model to the remote model, etc.
    }

2. Подготовьте входное изображение.

Затем для каждого изображения, которое вы хотите подписать, создайте объект FirebaseVisionImage , используя один из параметров, описанных в этом разделе, и передайте его экземпляру FirebaseVisionImageLabeler (описанному в следующем разделе).

Вы можете создать объект FirebaseVisionImage из объекта media.Image , файла на устройстве, массива байтов или объекта Bitmap :

  • Чтобы создать объект FirebaseVisionImage из объекта media.Image , например, при захвате изображения с камеры устройства, передайте объект media.Image и поворот изображения в FirebaseVisionImage.fromMediaImage() .

    Если вы используете библиотеку CameraX , классы OnImageCapturedListener и ImageAnalysis.Analyzer вычисляют значение поворота автоматически, поэтому вам просто нужно преобразовать поворот в одну из констант ROTATION_ ML Kit перед вызовом FirebaseVisionImage.fromMediaImage() :

    Java

    private class YourAnalyzer implements ImageAnalysis.Analyzer {
    
        private int degreesToFirebaseRotation(int degrees) {
            switch (degrees) {
                case 0:
                    return FirebaseVisionImageMetadata.ROTATION_0;
                case 90:
                    return FirebaseVisionImageMetadata.ROTATION_90;
                case 180:
                    return FirebaseVisionImageMetadata.ROTATION_180;
                case 270:
                    return FirebaseVisionImageMetadata.ROTATION_270;
                default:
                    throw new IllegalArgumentException(
                            "Rotation must be 0, 90, 180, or 270.");
            }
        }
    
        @Override
        public void analyze(ImageProxy imageProxy, int degrees) {
            if (imageProxy == null || imageProxy.getImage() == null) {
                return;
            }
            Image mediaImage = imageProxy.getImage();
            int rotation = degreesToFirebaseRotation(degrees);
            FirebaseVisionImage image =
                    FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
            // Pass image to an ML Kit Vision API
            // ...
        }
    }

    Kotlin

    private class YourImageAnalyzer : ImageAnalysis.Analyzer {
        private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) {
            0 -> FirebaseVisionImageMetadata.ROTATION_0
            90 -> FirebaseVisionImageMetadata.ROTATION_90
            180 -> FirebaseVisionImageMetadata.ROTATION_180
            270 -> FirebaseVisionImageMetadata.ROTATION_270
            else -> throw Exception("Rotation must be 0, 90, 180, or 270.")
        }
    
        override fun analyze(imageProxy: ImageProxy?, degrees: Int) {
            val mediaImage = imageProxy?.image
            val imageRotation = degreesToFirebaseRotation(degrees)
            if (mediaImage != null) {
                val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation)
                // Pass image to an ML Kit Vision API
                // ...
            }
        }
    }

    Если вы не используете библиотеку камеры, которая вычисляет угол поворота изображения, вы можете рассчитать его на основе угла поворота устройства и ориентации датчика камеры в устройстве:

    Java

    private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
    static {
        ORIENTATIONS.append(Surface.ROTATION_0, 90);
        ORIENTATIONS.append(Surface.ROTATION_90, 0);
        ORIENTATIONS.append(Surface.ROTATION_180, 270);
        ORIENTATIONS.append(Surface.ROTATION_270, 180);
    }
    
    /**
     * Get the angle by which an image must be rotated given the device's current
     * orientation.
     */
    @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
    private int getRotationCompensation(String cameraId, Activity activity, Context context)
            throws CameraAccessException {
        // Get the device's current rotation relative to its "native" orientation.
        // Then, from the ORIENTATIONS table, look up the angle the image must be
        // rotated to compensate for the device's rotation.
        int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
        int rotationCompensation = ORIENTATIONS.get(deviceRotation);
    
        // On most devices, the sensor orientation is 90 degrees, but for some
        // devices it is 270 degrees. For devices with a sensor orientation of
        // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
        CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE);
        int sensorOrientation = cameraManager
                .getCameraCharacteristics(cameraId)
                .get(CameraCharacteristics.SENSOR_ORIENTATION);
        rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360;
    
        // Return the corresponding FirebaseVisionImageMetadata rotation value.
        int result;
        switch (rotationCompensation) {
            case 0:
                result = FirebaseVisionImageMetadata.ROTATION_0;
                break;
            case 90:
                result = FirebaseVisionImageMetadata.ROTATION_90;
                break;
            case 180:
                result = FirebaseVisionImageMetadata.ROTATION_180;
                break;
            case 270:
                result = FirebaseVisionImageMetadata.ROTATION_270;
                break;
            default:
                result = FirebaseVisionImageMetadata.ROTATION_0;
                Log.e(TAG, "Bad rotation value: " + rotationCompensation);
        }
        return result;
    }

    Kotlin

    private val ORIENTATIONS = SparseIntArray()
    
    init {
        ORIENTATIONS.append(Surface.ROTATION_0, 90)
        ORIENTATIONS.append(Surface.ROTATION_90, 0)
        ORIENTATIONS.append(Surface.ROTATION_180, 270)
        ORIENTATIONS.append(Surface.ROTATION_270, 180)
    }
    /**
     * Get the angle by which an image must be rotated given the device's current
     * orientation.
     */
    @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
    @Throws(CameraAccessException::class)
    private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int {
        // Get the device's current rotation relative to its "native" orientation.
        // Then, from the ORIENTATIONS table, look up the angle the image must be
        // rotated to compensate for the device's rotation.
        val deviceRotation = activity.windowManager.defaultDisplay.rotation
        var rotationCompensation = ORIENTATIONS.get(deviceRotation)
    
        // On most devices, the sensor orientation is 90 degrees, but for some
        // devices it is 270 degrees. For devices with a sensor orientation of
        // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
        val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager
        val sensorOrientation = cameraManager
                .getCameraCharacteristics(cameraId)
                .get(CameraCharacteristics.SENSOR_ORIENTATION)!!
        rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360
    
        // Return the corresponding FirebaseVisionImageMetadata rotation value.
        val result: Int
        when (rotationCompensation) {
            0 -> result = FirebaseVisionImageMetadata.ROTATION_0
            90 -> result = FirebaseVisionImageMetadata.ROTATION_90
            180 -> result = FirebaseVisionImageMetadata.ROTATION_180
            270 -> result = FirebaseVisionImageMetadata.ROTATION_270
            else -> {
                result = FirebaseVisionImageMetadata.ROTATION_0
                Log.e(TAG, "Bad rotation value: $rotationCompensation")
            }
        }
        return result
    }

    Затем передайте объект media.Image и значение поворота в FirebaseVisionImage.fromMediaImage() :

    Java

    FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);

    Kotlin

    val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
  • Чтобы создать объект FirebaseVisionImage из URI файла, передайте контекст приложения и URI файла в FirebaseVisionImage.fromFilePath() . Это полезно при использовании намерения ACTION_GET_CONTENT , чтобы предложить пользователю выбрать изображение из приложения-галереи.

    Java

    FirebaseVisionImage image;
    try {
        image = FirebaseVisionImage.fromFilePath(context, uri);
    } catch (IOException e) {
        e.printStackTrace();
    }

    Kotlin

    val image: FirebaseVisionImage
    try {
        image = FirebaseVisionImage.fromFilePath(context, uri)
    } catch (e: IOException) {
        e.printStackTrace()
    }
  • Чтобы создать объект FirebaseVisionImage из ByteBuffer или массива байтов, сначала рассчитайте поворот изображения, как описано выше для входных данных media.Image .

    Затем создайте объект FirebaseVisionImageMetadata , содержащий высоту, ширину, формат кодировки цвета и поворот изображения:

    Java

    FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder()
            .setWidth(480)   // 480x360 is typically sufficient for
            .setHeight(360)  // image recognition
            .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
            .setRotation(rotation)
            .build();

    Kotlin

    val metadata = FirebaseVisionImageMetadata.Builder()
            .setWidth(480) // 480x360 is typically sufficient for
            .setHeight(360) // image recognition
            .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
            .setRotation(rotation)
            .build()

    Используйте буфер или массив и объект метаданных для создания объекта FirebaseVisionImage :

    Java

    FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata);
    // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);

    Kotlin

    val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata)
    // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
  • Чтобы создать объект FirebaseVisionImage из объекта Bitmap :

    Java

    FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);

    Kotlin

    val image = FirebaseVisionImage.fromBitmap(bitmap)
    Изображение, представленное объектом Bitmap , должно быть вертикальным, без необходимости дополнительного поворота.

3. Запустите маркировщик изображений.

Чтобы маркировать объекты на изображении, передайте объект FirebaseVisionImage методу processImage() объекта FirebaseVisionImageLabeler .

Java

labeler.processImage(image)
        .addOnSuccessListener(new OnSuccessListener<List<FirebaseVisionImageLabel>>() {
            @Override
            public void onSuccess(List<FirebaseVisionImageLabel> labels) {
                // Task completed successfully
                // ...
            }
        })
        .addOnFailureListener(new OnFailureListener() {
            @Override
            public void onFailure(@NonNull Exception e) {
                // Task failed with an exception
                // ...
            }
        });

Kotlin

labeler.processImage(image)
        .addOnSuccessListener { labels ->
            // Task completed successfully
            // ...
        }
        .addOnFailureListener { e ->
            // Task failed with an exception
            // ...
        }

Если разметка изображения выполнена успешно, массив объектов FirebaseVisionImageLabel будет передан прослушивателю событий. Из каждого объекта можно получить информацию о распознанном на изображении элементе.

Например:

Java

for (FirebaseVisionImageLabel label: labels) {
    String text = label.getText();
    float confidence = label.getConfidence();
}

Kotlin

for (label in labels) {
    val text = label.text
    val confidence = label.confidence
}

Советы по улучшению производительности в реальном времени

  • Устраните вызовы детектора. Если во время работы детектора появляется новый видеокадр, отбросьте его.
  • Если вы используете выходные данные детектора для наложения графики на входное изображение, сначала получите результат из ML Kit, а затем визуализируйте изображение и наложение за один шаг. Таким образом, визуализация на поверхности дисплея выполняется только один раз для каждого входного кадра.
  • Если вы используете API Camera2, снимайте изображения в формате ImageFormat.YUV_420_888 .

    Если вы используете старый API камеры, снимайте изображения в формате ImageFormat.NV21 .