Cihazdaki bir model veya bir bulut modeli kullanarak bir görüntüde tanınan nesneleri etiketlemek için ML Kit'i kullanabilirsiniz. Her bir yaklaşımın faydaları hakkında bilgi edinmek için genel bakışa bakın.
Sen başlamadan önce
- Henüz yapmadıysanız, Android projenize Firebase'i ekleyin .
- Modülünüze (uygulama düzeyinde) ML Kit Android kitaplıklarının bağımlılıklarını ekleyin (genellikle
app/build.gradle
):apply plugin: 'com.android.application' apply plugin: 'com.google.gms.google-services' dependencies { // ... implementation 'com.google.firebase:firebase-ml-vision:24.0.3' implementation 'com.google.firebase:firebase-ml-vision-image-label-model:20.0.1' }
- İsteğe bağlı ancak önerilir : Cihazdaki API'yi kullanıyorsanız, uygulamanızı Play Store'dan yüklendikten sonra makine öğrenimi modelini cihaza otomatik olarak indirecek şekilde yapılandırın.
Bunu yapmak için uygulamanızın
AndroidManifest.xml
dosyasına aşağıdaki bildirimi ekleyin:<application ...> ... <meta-data android:name="com.google.firebase.ml.vision.DEPENDENCIES" android:value="label" /> <!-- To use multiple models: android:value="label,model2,model3" --> </application>
Kurulum zamanı model indirmelerini etkinleştirmezseniz, model, cihaz üzerindeki algılayıcıyı ilk çalıştırdığınızda indirilecektir. İndirme işlemi tamamlanmadan yaptığınız istekler sonuç vermeyecektir. Bulut tabanlı modeli kullanmak istiyorsanız ve projeniz için Bulut tabanlı API'leri henüz etkinleştirmediyseniz, şimdi yapın:
- Firebase konsolunun ML Kit API'leri sayfasını açın.
Projenizi henüz bir Blaze fiyatlandırma planına yükseltmediyseniz, bunu yapmak için Yükselt'e tıklayın. (Yalnızca projeniz Blaze planında değilse yükseltme yapmanız istenir.)
Yalnızca Blaze düzeyindeki projeler Bulut tabanlı API'leri kullanabilir.
- Bulut tabanlı API'ler zaten etkinleştirilmemişse Bulut Tabanlı API'leri Etkinleştir 'i tıklayın.
Yalnızca cihazdaki modeli kullanmak istiyorsanız bu adımı atlayabilirsiniz.
Artık, cihazdaki bir model veya bulut tabanlı bir model kullanarak görüntüleri etiketlemeye hazırsınız.
1. Giriş görüntüsünü hazırlayın
Görüntünüzden birFirebaseVisionImage
nesnesi oluşturun. Görüntü etiketleyici, bir Bitmap
kullandığınızda veya camera2 API kullanıyorsanız, mümkün olduğunda önerilen JPEG biçimli bir media.Image
kullandığınızda en hızlı şekilde çalışır.Bir cihazın kamerasından bir görüntü yakalarken olduğu gibi, bir
FirebaseVisionImage
nesnesinden birmedia.Image
nesnesi oluşturmak için,media.Image
nesnesini ve görüntünün dönüşünü FirebaseVisionImage.fromMediaImageFirebaseVisionImage.fromMediaImage()
öğesine iletin.CameraX kitaplığını kullanıyorsanız,
OnImageCapturedListener
veImageAnalysis.Analyzer
sınıfları sizin için döndürme değerini hesaplar, bu nedenle FirebaseVisionImage.fromMediaImageFirebaseVisionImage.fromMediaImage()
öğesini çağırmadan önce dönüşü ML Kit'inROTATION_
sabitlerinden birine dönüştürmeniz yeterlidir:Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { private int degreesToFirebaseRotation(int degrees) { switch (degrees) { case 0: return FirebaseVisionImageMetadata.ROTATION_0; case 90: return FirebaseVisionImageMetadata.ROTATION_90; case 180: return FirebaseVisionImageMetadata.ROTATION_180; case 270: return FirebaseVisionImageMetadata.ROTATION_270; default: throw new IllegalArgumentException( "Rotation must be 0, 90, 180, or 270."); } } @Override public void analyze(ImageProxy imageProxy, int degrees) { if (imageProxy == null || imageProxy.getImage() == null) { return; } Image mediaImage = imageProxy.getImage(); int rotation = degreesToFirebaseRotation(degrees); FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation); // Pass image to an ML Kit Vision API // ... } }
Kotlin+KTX
private class YourImageAnalyzer : ImageAnalysis.Analyzer { private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) { 0 -> FirebaseVisionImageMetadata.ROTATION_0 90 -> FirebaseVisionImageMetadata.ROTATION_90 180 -> FirebaseVisionImageMetadata.ROTATION_180 270 -> FirebaseVisionImageMetadata.ROTATION_270 else -> throw Exception("Rotation must be 0, 90, 180, or 270.") } override fun analyze(imageProxy: ImageProxy?, degrees: Int) { val mediaImage = imageProxy?.image val imageRotation = degreesToFirebaseRotation(degrees) if (mediaImage != null) { val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation) // Pass image to an ML Kit Vision API // ... } } }
Size görüntünün dönüşünü veren bir kamera kitaplığı kullanmıyorsanız, bunu cihazın dönüşünden ve cihazdaki kamera sensörünün oryantasyonundan hesaplayabilirsiniz:
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 90); ORIENTATIONS.append(Surface.ROTATION_90, 0); ORIENTATIONS.append(Surface.ROTATION_180, 270); ORIENTATIONS.append(Surface.ROTATION_270, 180); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, Context context) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360; // Return the corresponding FirebaseVisionImageMetadata rotation value. int result; switch (rotationCompensation) { case 0: result = FirebaseVisionImageMetadata.ROTATION_0; break; case 90: result = FirebaseVisionImageMetadata.ROTATION_90; break; case 180: result = FirebaseVisionImageMetadata.ROTATION_180; break; case 270: result = FirebaseVisionImageMetadata.ROTATION_270; break; default: result = FirebaseVisionImageMetadata.ROTATION_0; Log.e(TAG, "Bad rotation value: " + rotationCompensation); } return result; }
Kotlin+KTX
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 90) ORIENTATIONS.append(Surface.ROTATION_90, 0) ORIENTATIONS.append(Surface.ROTATION_180, 270) ORIENTATIONS.append(Surface.ROTATION_270, 180) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360 // Return the corresponding FirebaseVisionImageMetadata rotation value. val result: Int when (rotationCompensation) { 0 -> result = FirebaseVisionImageMetadata.ROTATION_0 90 -> result = FirebaseVisionImageMetadata.ROTATION_90 180 -> result = FirebaseVisionImageMetadata.ROTATION_180 270 -> result = FirebaseVisionImageMetadata.ROTATION_270 else -> { result = FirebaseVisionImageMetadata.ROTATION_0 Log.e(TAG, "Bad rotation value: $rotationCompensation") } } return result }
Ardından
media.Image
nesnesini ve döndürme değerini FirebaseVisionImage.fromMediaImageFirebaseVisionImage.fromMediaImage()
öğesine iletin:Java
FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
Kotlin+KTX
val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
- Bir dosya URI'sinden bir
FirebaseVisionImage
nesnesi oluşturmak için uygulama bağlamını ve dosya URI'siniFirebaseVisionImage.fromFilePath()
. Bu, kullanıcıdan galeri uygulamasından bir resim seçmesini istemek için birACTION_GET_CONTENT
amacı kullandığınızda kullanışlıdır.Java
FirebaseVisionImage image; try { image = FirebaseVisionImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
Kotlin+KTX
val image: FirebaseVisionImage try { image = FirebaseVisionImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
- Bir
ByteBuffer
veya bir bayt dizisinden birFirebaseVisionImage
nesnesi oluşturmak için, öncemedia.Image
girişi için yukarıda açıklandığı gibi görüntü döndürmeyi hesaplayın.Ardından, görüntünün yüksekliğini, genişliğini, renk kodlama biçimini ve dönüşünü içeren bir
FirebaseVisionImageMetadata
nesnesi oluşturun:Java
FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build();
Kotlin+KTX
val metadata = FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build()
Bir
FirebaseVisionImage
nesnesi oluşturmak için arabelleği veya diziyi ve meta veri nesnesini kullanın:Java
FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata); // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
Kotlin+KTX
val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata) // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
- Bir
Bitmap
nesnesinden birFirebaseVisionImage
nesnesi oluşturmak için:Java
FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
Kotlin+KTX
val image = FirebaseVisionImage.fromBitmap(bitmap)
Bitmap
nesnesi tarafından temsil edilen görüntü, ek bir döndürme gerektirmeden dik olmalıdır.
2. Görüntü etiketleyiciyi yapılandırın ve çalıştırın
Bir görüntüdeki nesneleri etiketlemek içinFirebaseVisionImage
nesnesini FirebaseVisionImageLabeler
processImage
yöntemine iletin.İlk olarak,
FirebaseVisionImageLabeler
örneğini alın.Cihazdaki görüntü etiketleyiciyi kullanmak istiyorsanız:
Java
FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance() .getOnDeviceImageLabeler(); // Or, to set the minimum confidence required: // FirebaseVisionOnDeviceImageLabelerOptions options = // new FirebaseVisionOnDeviceImageLabelerOptions.Builder() // .setConfidenceThreshold(0.7f) // .build(); // FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance() // .getOnDeviceImageLabeler(options);
Kotlin+KTX
val labeler = FirebaseVision.getInstance().getOnDeviceImageLabeler() // Or, to set the minimum confidence required: // val options = FirebaseVisionOnDeviceImageLabelerOptions.Builder() // .setConfidenceThreshold(0.7f) // .build() // val labeler = FirebaseVision.getInstance().getOnDeviceImageLabeler(options)
Bulut görüntüsü etiketleyiciyi kullanmak istiyorsanız:
Java
FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance() .getCloudImageLabeler(); // Or, to set the minimum confidence required: // FirebaseVisionCloudImageLabelerOptions options = // new FirebaseVisionCloudImageLabelerOptions.Builder() // .setConfidenceThreshold(0.7f) // .build(); // FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance() // .getCloudImageLabeler(options);
Kotlin+KTX
val labeler = FirebaseVision.getInstance().getCloudImageLabeler() // Or, to set the minimum confidence required: // val options = FirebaseVisionCloudImageLabelerOptions.Builder() // .setConfidenceThreshold(0.7f) // .build() // val labeler = FirebaseVision.getInstance().getCloudImageLabeler(options)
Ardından görüntüyü
processImage()
yöntemine iletin:Java
labeler.processImage(image) .addOnSuccessListener(new OnSuccessListener<List<FirebaseVisionImageLabel>>() { @Override public void onSuccess(List<FirebaseVisionImageLabel> labels) { // Task completed successfully // ... } }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
Kotlin+KTX
labeler.processImage(image) .addOnSuccessListener { labels -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
3. Etiketli nesneler hakkında bilgi alın
Görüntü etiketleme işlemi başarılı olursa, başarılı dinleyiciyeFirebaseVisionImageLabel
nesnelerinin bir listesi iletilecektir. Her FirebaseVisionImageLabel
nesnesi, görüntüde etiketlenmiş bir şeyi temsil eder. Her etiket için etiketin metin açıklamasını, Bilgi Grafiği varlık kimliğini (varsa) ve eşleşmenin güven puanını alabilirsiniz. Örneğin: Java
for (FirebaseVisionImageLabel label: labels) {
String text = label.getText();
String entityId = label.getEntityId();
float confidence = label.getConfidence();
}
Kotlin+KTX
for (label in labels) {
val text = label.text
val entityId = label.entityId
val confidence = label.confidence
}
Gerçek zamanlı performansı iyileştirmeye yönelik ipuçları
Görüntüleri gerçek zamanlı bir uygulamada etiketlemek istiyorsanız, en iyi kare hızlarını elde etmek için şu yönergeleri izleyin:
- Throttle, görüntü etiketleyiciye çağrı yapar. Görüntü etiketleyici çalışırken yeni bir video karesi kullanıma sunulursa, kareyi bırakın.
- Giriş görüntüsünün üzerine grafik bindirmek için görüntü etiketleyicinin çıkışını kullanıyorsanız, önce ML Kit'ten sonucu alın, ardından görüntüyü ve bindirmeyi tek bir adımda oluşturun. Bunu yaparak, her giriş karesi için görüntüleme yüzeyine yalnızca bir kez render alırsınız.
Camera2 API kullanıyorsanız, görüntüleri
ImageFormat.YUV_420_888
biçiminde yakalayın.Daha eski Kamera API'sini kullanıyorsanız, görüntüleri
ImageFormat.NV21
biçiminde yakalayın.
Sonraki adımlar
- Cloud API kullanan bir uygulamayı üretime dağıtmadan önce , yetkisiz API erişiminin etkisini önlemek ve azaltmak için bazı ek adımlar atmalısınız.