אפשר להשתמש ב-ML Kit כדי להוסיף תוויות לאובייקטים שזוהו בתמונה, מודל במכשיר או מודל בענן. בסקירה הכללית מוסבר על היתרונות של כל גישה.
לפני שמתחילים
- אם עדיין לא עשיתם זאת, מוסיפים את Firebase לפרויקט Android.
- הוספת יחסי התלות של ספריות ML Kit ל-Android למודול
(ברמת האפליקציה) קובץ Gradle (בדרך כלל
app/build.gradle
):apply plugin: 'com.android.application' apply plugin: 'com.google.gms.google-services' dependencies { // ... implementation 'com.google.firebase:firebase-ml-vision:24.0.3' implementation 'com.google.firebase:firebase-ml-vision-image-label-model:20.0.1' }
-
אופציונלי אבל מומלץ: אם אתם משתמשים ב-API במכשיר, צריך להגדיר את
להורדה אוטומטית של מודל למידת המכונה במכשיר אחרי שהאפליקציה
מותקנת מחנות Play.
כדי לעשות את זה, צריך להוסיף את ההצהרה הבאה להצהרה של האפליקציה קובץ
AndroidManifest.xml
: אם לא מפעילים הורדות של מודלים בזמן ההתקנה, המודלים יורדים בפעם הראשונה שמפעילים את הגלאי במכשיר. הבקשות שלכם לפני שההורדה תסתיים, לא יתקבלו תוצאות.<application ...> ... <meta-data android:name="com.google.firebase.ml.vision.DEPENDENCIES" android:value="label" /> <!-- To use multiple models: android:value="label,model2,model3" --> </application>
-
אם אתם רוצים להשתמש במודל מבוסס-הענן, ואתם עדיין לא הפעלתם את ממשקי ה-API מבוססי-הענן בפרויקט, עליכם לעשות זאת עכשיו:
- פתיחת ML Kit דף ממשקי ה-API במסוף Firebase.
-
אם עדיין לא שדרגתם את הפרויקט לתוכנית תמחור ותשלומים של Blaze, לוחצים על כדי לעשות זאת, אפשר לשדרג. (תתבקש לשדרג רק אם הוא לא בתוכנית Blaze.)
רק בפרויקטים ברמת Blaze אפשר להשתמש בממשקי API מבוססי-ענן.
- אם ממשקי API מבוססי-ענן עדיין לא מופעלים, לוחצים על הפעלת ממשקי API מבוססי-ענן. ממשקי API.
אם רוצים להשתמש רק במודל ששמור במכשיר, אפשר לדלג על השלב הזה.
עכשיו אתם מוכנים לתייג תמונות באמצעות מודל במכשיר או מודל מבוסס-ענן.
1. הכנת תמונת הקלט
יוצרים אובייקטFirebaseVisionImage
מהתמונה.
מתייג התמונות פועל הכי מהר כשמשתמשים ב-Bitmap
או אם משתמשים
Camera2 API, media.Image
בפורמט JPEG, שמומלץ כאשר
ככל האפשר.
-
כדי ליצור אובייקט
FirebaseVisionImage
מתוךmedia.Image
אובייקט, למשל בזמן צילום תמונה מתוך של המכשיר, מעבירים את האובייקטmedia.Image
ל-FirebaseVisionImage.fromMediaImage()
.אם אתם משתמשים בספרייה CameraX, הערך של הזווית מסתובב בעצמו על ידי הכיתות
OnImageCapturedListener
ו-ImageAnalysis.Analyzer
, כך שצריך רק להמיר את הזווית לאחד מהקבועיםROTATION_
של ML Kit לפני שמפעילים אתFirebaseVisionImage.fromMediaImage()
:Java
private class YourAnalyzer implements ImageAnalysis.Analyzer { private int degreesToFirebaseRotation(int degrees) { switch (degrees) { case 0: return FirebaseVisionImageMetadata.ROTATION_0; case 90: return FirebaseVisionImageMetadata.ROTATION_90; case 180: return FirebaseVisionImageMetadata.ROTATION_180; case 270: return FirebaseVisionImageMetadata.ROTATION_270; default: throw new IllegalArgumentException( "Rotation must be 0, 90, 180, or 270."); } } @Override public void analyze(ImageProxy imageProxy, int degrees) { if (imageProxy == null || imageProxy.getImage() == null) { return; } Image mediaImage = imageProxy.getImage(); int rotation = degreesToFirebaseRotation(degrees); FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation); // Pass image to an ML Kit Vision API // ... } }
Kotlin+KTX
private class YourImageAnalyzer : ImageAnalysis.Analyzer { private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) { 0 -> FirebaseVisionImageMetadata.ROTATION_0 90 -> FirebaseVisionImageMetadata.ROTATION_90 180 -> FirebaseVisionImageMetadata.ROTATION_180 270 -> FirebaseVisionImageMetadata.ROTATION_270 else -> throw Exception("Rotation must be 0, 90, 180, or 270.") } override fun analyze(imageProxy: ImageProxy?, degrees: Int) { val mediaImage = imageProxy?.image val imageRotation = degreesToFirebaseRotation(degrees) if (mediaImage != null) { val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation) // Pass image to an ML Kit Vision API // ... } } }
אם לא משתמשים בספריית מצלמה שמאפשרת סיבוב תמונה, הוא יכול לחשב אותו על סמך סיבוב המכשיר וכיוון המצלמה החיישן במכשיר:
Java
private static final SparseIntArray ORIENTATIONS = new SparseIntArray(); static { ORIENTATIONS.append(Surface.ROTATION_0, 90); ORIENTATIONS.append(Surface.ROTATION_90, 0); ORIENTATIONS.append(Surface.ROTATION_180, 270); ORIENTATIONS.append(Surface.ROTATION_270, 180); } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) private int getRotationCompensation(String cameraId, Activity activity, Context context) throws CameraAccessException { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation(); int rotationCompensation = ORIENTATIONS.get(deviceRotation); // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE); int sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION); rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360; // Return the corresponding FirebaseVisionImageMetadata rotation value. int result; switch (rotationCompensation) { case 0: result = FirebaseVisionImageMetadata.ROTATION_0; break; case 90: result = FirebaseVisionImageMetadata.ROTATION_90; break; case 180: result = FirebaseVisionImageMetadata.ROTATION_180; break; case 270: result = FirebaseVisionImageMetadata.ROTATION_270; break; default: result = FirebaseVisionImageMetadata.ROTATION_0; Log.e(TAG, "Bad rotation value: " + rotationCompensation); } return result; }
Kotlin+KTX
private val ORIENTATIONS = SparseIntArray() init { ORIENTATIONS.append(Surface.ROTATION_0, 90) ORIENTATIONS.append(Surface.ROTATION_90, 0) ORIENTATIONS.append(Surface.ROTATION_180, 270) ORIENTATIONS.append(Surface.ROTATION_270, 180) } /** * Get the angle by which an image must be rotated given the device's current * orientation. */ @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP) @Throws(CameraAccessException::class) private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int { // Get the device's current rotation relative to its "native" orientation. // Then, from the ORIENTATIONS table, look up the angle the image must be // rotated to compensate for the device's rotation. val deviceRotation = activity.windowManager.defaultDisplay.rotation var rotationCompensation = ORIENTATIONS.get(deviceRotation) // On most devices, the sensor orientation is 90 degrees, but for some // devices it is 270 degrees. For devices with a sensor orientation of // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees. val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager val sensorOrientation = cameraManager .getCameraCharacteristics(cameraId) .get(CameraCharacteristics.SENSOR_ORIENTATION)!! rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360 // Return the corresponding FirebaseVisionImageMetadata rotation value. val result: Int when (rotationCompensation) { 0 -> result = FirebaseVisionImageMetadata.ROTATION_0 90 -> result = FirebaseVisionImageMetadata.ROTATION_90 180 -> result = FirebaseVisionImageMetadata.ROTATION_180 270 -> result = FirebaseVisionImageMetadata.ROTATION_270 else -> { result = FirebaseVisionImageMetadata.ROTATION_0 Log.e(TAG, "Bad rotation value: $rotationCompensation") } } return result }
לאחר מכן, מעבירים את האובייקט
media.Image
ל-FirebaseVisionImage.fromMediaImage()
:Java
FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
Kotlin+KTX
val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
- כדי ליצור אובייקט
FirebaseVisionImage
מ-URI של קובץ, מעבירים את ההקשר של האפליקציה ואת ה-URI של הקובץFirebaseVisionImage.fromFilePath()
. זה שימושי כאשר משתמשים ב-IntentACTION_GET_CONTENT
כדי לבקש מהמשתמש לבחור תמונה מאפליקציית הגלריה.Java
FirebaseVisionImage image; try { image = FirebaseVisionImage.fromFilePath(context, uri); } catch (IOException e) { e.printStackTrace(); }
Kotlin+KTX
val image: FirebaseVisionImage try { image = FirebaseVisionImage.fromFilePath(context, uri) } catch (e: IOException) { e.printStackTrace() }
- כדי ליצור אובייקט
FirebaseVisionImage
מתוךByteBuffer
או מערך בייטים, מחשבים קודם את התמונה של סיבוב הנתונים כפי שמתואר למעלה עבור קלטmedia.Image
.לאחר מכן, יוצרים אובייקט
FirebaseVisionImageMetadata
שמכיל את הגובה, הרוחב, פורמט קידוד הצבע של התמונה וסבב:Java
FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build();
Kotlin+KTX
val metadata = FirebaseVisionImageMetadata.Builder() .setWidth(480) // 480x360 is typically sufficient for .setHeight(360) // image recognition .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21) .setRotation(rotation) .build()
משתמשים במאגר הנתונים הזמני או במערך ובאובייקט המטא-נתונים כדי ליצור אובייקט
FirebaseVisionImage
:Java
FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata); // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);
Kotlin+KTX
val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata) // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
- כדי ליצור אובייקט
FirebaseVisionImage
מתוך אובייקטBitmap
:Java
FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);
Kotlin+KTX
val image = FirebaseVisionImage.fromBitmap(bitmap)
Bitmap
חייבת להיות זקוף, ללא צורך בסיבוב נוסף.
2. הגדרה והפעלה של מתייג התמונות
כדי להוסיף תוויות לאובייקטים בתמונה, צריך להעביר את האובייקטFirebaseVisionImage
אל
השיטה processImage
של FirebaseVisionImageLabeler
.
קודם כל, נקבל מופע של
FirebaseVisionImageLabeler
אם רוצים להשתמש במתייג התמונות במכשיר:
Java
FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance() .getOnDeviceImageLabeler(); // Or, to set the minimum confidence required: // FirebaseVisionOnDeviceImageLabelerOptions options = // new FirebaseVisionOnDeviceImageLabelerOptions.Builder() // .setConfidenceThreshold(0.7f) // .build(); // FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance() // .getOnDeviceImageLabeler(options);
Kotlin+KTX
val labeler = FirebaseVision.getInstance().getOnDeviceImageLabeler() // Or, to set the minimum confidence required: // val options = FirebaseVisionOnDeviceImageLabelerOptions.Builder() // .setConfidenceThreshold(0.7f) // .build() // val labeler = FirebaseVision.getInstance().getOnDeviceImageLabeler(options)
אם רוצים להשתמש במתייג של תמונות בענן:
Java
FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance() .getCloudImageLabeler(); // Or, to set the minimum confidence required: // FirebaseVisionCloudImageLabelerOptions options = // new FirebaseVisionCloudImageLabelerOptions.Builder() // .setConfidenceThreshold(0.7f) // .build(); // FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance() // .getCloudImageLabeler(options);
Kotlin+KTX
val labeler = FirebaseVision.getInstance().getCloudImageLabeler() // Or, to set the minimum confidence required: // val options = FirebaseVisionCloudImageLabelerOptions.Builder() // .setConfidenceThreshold(0.7f) // .build() // val labeler = FirebaseVision.getInstance().getCloudImageLabeler(options)
לאחר מכן, מעבירים את התמונה ל-method
processImage()
:Java
labeler.processImage(image) .addOnSuccessListener(new OnSuccessListener<List<FirebaseVisionImageLabel>>() { @Override public void onSuccess(List<FirebaseVisionImageLabel> labels) { // Task completed successfully // ... } }) .addOnFailureListener(new OnFailureListener() { @Override public void onFailure(@NonNull Exception e) { // Task failed with an exception // ... } });
Kotlin+KTX
labeler.processImage(image) .addOnSuccessListener { labels -> // Task completed successfully // ... } .addOnFailureListener { e -> // Task failed with an exception // ... }
3. אחזור מידע על אובייקטים מתויגים
אם הפעולה של הוספת תווית לתמונות מצליחה, רשימה שלFirebaseVisionImageLabel
אובייקטים יועברו אל
הצלחה רבה. כל אובייקט FirebaseVisionImageLabel
מייצג משהו
שסומן בתווית בתמונה. אפשר לראות את הטקסט של כל תווית
תיאור,
מזהה ישות ב-Knowledge Graph
(אם זמין), ואת רמת הסמך של ההתאמה. לדוגמה:
Java
for (FirebaseVisionImageLabel label: labels) {
String text = label.getText();
String entityId = label.getEntityId();
float confidence = label.getConfidence();
}
Kotlin+KTX
for (label in labels) {
val text = label.text
val entityId = label.entityId
val confidence = label.confidence
}
טיפים לשיפור הביצועים בזמן אמת
כדי להוסיף תווית לתמונות באפליקציה בזמן אמת, צריך לפעול לפי השלבים הבאים כדי להשיג את קצבי הפריימים הטובים ביותר:
- ויסות קריאות למתייג התמונות. אם פריים חדש בסרטון הופך כאשר מתייג התמונות פועל, משחררים את המסגרת.
- אם משתמשים בפלט של מתייג התמונה כדי להציג גרפיקה בשכבת-על מקבלים קודם את התוצאה מ-ML Kit ואז מעבדים את התמונה וליצור שכבת-על בשלב אחד. כך תוכלו להציג את משטח המסך פעם אחת בלבד לכל מסגרת קלט.
-
אם משתמשים ב- Camera2 API, מצלמים תמונות ב פורמט של
ImageFormat.YUV_420_888
.אם משתמשים בגרסה הישנה של ממשק ה-API של המצלמה, מצלמים תמונות ב פורמט של
ImageFormat.NV21
.
השלבים הבאים
- לפני שפורסים לסביבת ייצור אפליקציה שמשתמשת ב-Cloud API, צריך לבצע את הפעולות הבאות צעדים נוספים למניעה ולצמצום ההשפעה של גישה לא מורשית ל-API.