הוספת תוויות לתמונות באמצעות ערכת למידת מכונה ב-Android

אפשר להשתמש ב-ML Kit כדי להוסיף תוויות לאובייקטים שזוהו בתמונה, מודל במכשיר או מודל בענן. בסקירה הכללית מוסבר על היתרונות של כל גישה.

לפני שמתחילים

  1. אם עדיין לא עשיתם זאת, מוסיפים את Firebase לפרויקט Android.
  2. הוספת יחסי התלות של ספריות ML Kit ל-Android למודול (ברמת האפליקציה) קובץ Gradle (בדרך כלל app/build.gradle):
    apply plugin: 'com.android.application'
    apply plugin: 'com.google.gms.google-services'
    
    dependencies {
      // ...
    
      implementation 'com.google.firebase:firebase-ml-vision:24.0.3'
      implementation 'com.google.firebase:firebase-ml-vision-image-label-model:20.0.1'
    }
  3. אופציונלי אבל מומלץ: אם אתם משתמשים ב-API במכשיר, צריך להגדיר את להורדה אוטומטית של מודל למידת המכונה במכשיר אחרי שהאפליקציה מותקנת מחנות Play.

    כדי לעשות את זה, צריך להוסיף את ההצהרה הבאה להצהרה של האפליקציה קובץ AndroidManifest.xml:

    <application ...>
      ...
      <meta-data
          android:name="com.google.firebase.ml.vision.DEPENDENCIES"
          android:value="label" />
      <!-- To use multiple models: android:value="label,model2,model3" -->
    </application>
    אם לא מפעילים הורדות של מודלים בזמן ההתקנה, המודלים יורדים בפעם הראשונה שמפעילים את הגלאי במכשיר. הבקשות שלכם לפני שההורדה תסתיים, לא יתקבלו תוצאות.
  4. אם אתם רוצים להשתמש במודל מבוסס-הענן, ואתם עדיין לא הפעלתם את ממשקי ה-API מבוססי-הענן בפרויקט, עליכם לעשות זאת עכשיו:

    1. פתיחת ML Kit דף ממשקי ה-API במסוף Firebase.
    2. אם עדיין לא שדרגתם את הפרויקט לתוכנית תמחור ותשלומים של Blaze, לוחצים על כדי לעשות זאת, אפשר לשדרג. (תתבקש לשדרג רק אם הוא לא בתוכנית Blaze.)

      רק בפרויקטים ברמת Blaze אפשר להשתמש בממשקי API מבוססי-ענן.

    3. אם ממשקי API מבוססי-ענן עדיין לא מופעלים, לוחצים על הפעלת ממשקי API מבוססי-ענן. ממשקי API.

    אם רוצים להשתמש רק במודל ששמור במכשיר, אפשר לדלג על השלב הזה.

עכשיו אתם מוכנים לתייג תמונות באמצעות מודל במכשיר או מודל מבוסס-ענן.

1. הכנת תמונת הקלט

יוצרים אובייקט FirebaseVisionImage מהתמונה. מתייג התמונות פועל הכי מהר כשמשתמשים ב-Bitmap או אם משתמשים Camera2 API, media.Image בפורמט JPEG, שמומלץ כאשר ככל האפשר.

  • כדי ליצור אובייקט FirebaseVisionImage מתוך media.Image אובייקט, למשל בזמן צילום תמונה מתוך של המכשיר, מעבירים את האובייקט media.Image ל-FirebaseVisionImage.fromMediaImage().

    אם אתם משתמשים בספרייה CameraX, הערך של הזווית מסתובב בעצמו על ידי הכיתות OnImageCapturedListener ו-ImageAnalysis.Analyzer, כך שצריך רק להמיר את הזווית לאחד מהקבועים ROTATION_ של ML Kit לפני שמפעילים את FirebaseVisionImage.fromMediaImage():

    Java

    private class YourAnalyzer implements ImageAnalysis.Analyzer {
    
        private int degreesToFirebaseRotation(int degrees) {
            switch (degrees) {
                case 0:
                    return FirebaseVisionImageMetadata.ROTATION_0;
                case 90:
                    return FirebaseVisionImageMetadata.ROTATION_90;
                case 180:
                    return FirebaseVisionImageMetadata.ROTATION_180;
                case 270:
                    return FirebaseVisionImageMetadata.ROTATION_270;
                default:
                    throw new IllegalArgumentException(
                            "Rotation must be 0, 90, 180, or 270.");
            }
        }
    
        @Override
        public void analyze(ImageProxy imageProxy, int degrees) {
            if (imageProxy == null || imageProxy.getImage() == null) {
                return;
            }
            Image mediaImage = imageProxy.getImage();
            int rotation = degreesToFirebaseRotation(degrees);
            FirebaseVisionImage image =
                    FirebaseVisionImage.fromMediaImage(mediaImage, rotation);
            // Pass image to an ML Kit Vision API
            // ...
        }
    }

    Kotlin+KTX

    private class YourImageAnalyzer : ImageAnalysis.Analyzer {
        private fun degreesToFirebaseRotation(degrees: Int): Int = when(degrees) {
            0 -> FirebaseVisionImageMetadata.ROTATION_0
            90 -> FirebaseVisionImageMetadata.ROTATION_90
            180 -> FirebaseVisionImageMetadata.ROTATION_180
            270 -> FirebaseVisionImageMetadata.ROTATION_270
            else -> throw Exception("Rotation must be 0, 90, 180, or 270.")
        }
    
        override fun analyze(imageProxy: ImageProxy?, degrees: Int) {
            val mediaImage = imageProxy?.image
            val imageRotation = degreesToFirebaseRotation(degrees)
            if (mediaImage != null) {
                val image = FirebaseVisionImage.fromMediaImage(mediaImage, imageRotation)
                // Pass image to an ML Kit Vision API
                // ...
            }
        }
    }

    אם לא משתמשים בספריית מצלמה שמאפשרת סיבוב תמונה, הוא יכול לחשב אותו על סמך סיבוב המכשיר וכיוון המצלמה החיישן במכשיר:

    Java

    private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
    static {
        ORIENTATIONS.append(Surface.ROTATION_0, 90);
        ORIENTATIONS.append(Surface.ROTATION_90, 0);
        ORIENTATIONS.append(Surface.ROTATION_180, 270);
        ORIENTATIONS.append(Surface.ROTATION_270, 180);
    }
    
    /**
     * Get the angle by which an image must be rotated given the device's current
     * orientation.
     */
    @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
    private int getRotationCompensation(String cameraId, Activity activity, Context context)
            throws CameraAccessException {
        // Get the device's current rotation relative to its "native" orientation.
        // Then, from the ORIENTATIONS table, look up the angle the image must be
        // rotated to compensate for the device's rotation.
        int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
        int rotationCompensation = ORIENTATIONS.get(deviceRotation);
    
        // On most devices, the sensor orientation is 90 degrees, but for some
        // devices it is 270 degrees. For devices with a sensor orientation of
        // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
        CameraManager cameraManager = (CameraManager) context.getSystemService(CAMERA_SERVICE);
        int sensorOrientation = cameraManager
                .getCameraCharacteristics(cameraId)
                .get(CameraCharacteristics.SENSOR_ORIENTATION);
        rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360;
    
        // Return the corresponding FirebaseVisionImageMetadata rotation value.
        int result;
        switch (rotationCompensation) {
            case 0:
                result = FirebaseVisionImageMetadata.ROTATION_0;
                break;
            case 90:
                result = FirebaseVisionImageMetadata.ROTATION_90;
                break;
            case 180:
                result = FirebaseVisionImageMetadata.ROTATION_180;
                break;
            case 270:
                result = FirebaseVisionImageMetadata.ROTATION_270;
                break;
            default:
                result = FirebaseVisionImageMetadata.ROTATION_0;
                Log.e(TAG, "Bad rotation value: " + rotationCompensation);
        }
        return result;
    }

    Kotlin+KTX

    private val ORIENTATIONS = SparseIntArray()
    
    init {
        ORIENTATIONS.append(Surface.ROTATION_0, 90)
        ORIENTATIONS.append(Surface.ROTATION_90, 0)
        ORIENTATIONS.append(Surface.ROTATION_180, 270)
        ORIENTATIONS.append(Surface.ROTATION_270, 180)
    }
    /**
     * Get the angle by which an image must be rotated given the device's current
     * orientation.
     */
    @RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
    @Throws(CameraAccessException::class)
    private fun getRotationCompensation(cameraId: String, activity: Activity, context: Context): Int {
        // Get the device's current rotation relative to its "native" orientation.
        // Then, from the ORIENTATIONS table, look up the angle the image must be
        // rotated to compensate for the device's rotation.
        val deviceRotation = activity.windowManager.defaultDisplay.rotation
        var rotationCompensation = ORIENTATIONS.get(deviceRotation)
    
        // On most devices, the sensor orientation is 90 degrees, but for some
        // devices it is 270 degrees. For devices with a sensor orientation of
        // 270, rotate the image an additional 180 ((270 + 270) % 360) degrees.
        val cameraManager = context.getSystemService(CAMERA_SERVICE) as CameraManager
        val sensorOrientation = cameraManager
                .getCameraCharacteristics(cameraId)
                .get(CameraCharacteristics.SENSOR_ORIENTATION)!!
        rotationCompensation = (rotationCompensation + sensorOrientation + 270) % 360
    
        // Return the corresponding FirebaseVisionImageMetadata rotation value.
        val result: Int
        when (rotationCompensation) {
            0 -> result = FirebaseVisionImageMetadata.ROTATION_0
            90 -> result = FirebaseVisionImageMetadata.ROTATION_90
            180 -> result = FirebaseVisionImageMetadata.ROTATION_180
            270 -> result = FirebaseVisionImageMetadata.ROTATION_270
            else -> {
                result = FirebaseVisionImageMetadata.ROTATION_0
                Log.e(TAG, "Bad rotation value: $rotationCompensation")
            }
        }
        return result
    }

    לאחר מכן, מעבירים את האובייקט media.Image ל-FirebaseVisionImage.fromMediaImage():

    Java

    FirebaseVisionImage image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation);

    Kotlin+KTX

    val image = FirebaseVisionImage.fromMediaImage(mediaImage, rotation)
  • כדי ליצור אובייקט FirebaseVisionImage מ-URI של קובץ, מעבירים את ההקשר של האפליקציה ואת ה-URI של הקובץ FirebaseVisionImage.fromFilePath(). זה שימושי כאשר משתמשים ב-Intent ACTION_GET_CONTENT כדי לבקש מהמשתמש לבחור תמונה מאפליקציית הגלריה.

    Java

    FirebaseVisionImage image;
    try {
        image = FirebaseVisionImage.fromFilePath(context, uri);
    } catch (IOException e) {
        e.printStackTrace();
    }

    Kotlin+KTX

    val image: FirebaseVisionImage
    try {
        image = FirebaseVisionImage.fromFilePath(context, uri)
    } catch (e: IOException) {
        e.printStackTrace()
    }
  • כדי ליצור אובייקט FirebaseVisionImage מתוך ByteBuffer או מערך בייטים, מחשבים קודם את התמונה של סיבוב הנתונים כפי שמתואר למעלה עבור קלט media.Image.

    לאחר מכן, יוצרים אובייקט FirebaseVisionImageMetadata שמכיל את הגובה, הרוחב, פורמט קידוד הצבע של התמונה וסבב:

    Java

    FirebaseVisionImageMetadata metadata = new FirebaseVisionImageMetadata.Builder()
            .setWidth(480)   // 480x360 is typically sufficient for
            .setHeight(360)  // image recognition
            .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
            .setRotation(rotation)
            .build();

    Kotlin+KTX

    val metadata = FirebaseVisionImageMetadata.Builder()
            .setWidth(480) // 480x360 is typically sufficient for
            .setHeight(360) // image recognition
            .setFormat(FirebaseVisionImageMetadata.IMAGE_FORMAT_NV21)
            .setRotation(rotation)
            .build()

    משתמשים במאגר הנתונים הזמני או במערך ובאובייקט המטא-נתונים כדי ליצור אובייקט FirebaseVisionImage:

    Java

    FirebaseVisionImage image = FirebaseVisionImage.fromByteBuffer(buffer, metadata);
    // Or: FirebaseVisionImage image = FirebaseVisionImage.fromByteArray(byteArray, metadata);

    Kotlin+KTX

    val image = FirebaseVisionImage.fromByteBuffer(buffer, metadata)
    // Or: val image = FirebaseVisionImage.fromByteArray(byteArray, metadata)
  • כדי ליצור אובייקט FirebaseVisionImage מתוך אובייקט Bitmap:

    Java

    FirebaseVisionImage image = FirebaseVisionImage.fromBitmap(bitmap);

    Kotlin+KTX

    val image = FirebaseVisionImage.fromBitmap(bitmap)
    התמונה שמיוצגת על ידי האובייקט Bitmap חייבת להיות זקוף, ללא צורך בסיבוב נוסף.

2. הגדרה והפעלה של מתייג התמונות

כדי להוסיף תוויות לאובייקטים בתמונה, צריך להעביר את האובייקט FirebaseVisionImage אל השיטה processImage של FirebaseVisionImageLabeler.

  1. קודם כל, נקבל מופע של FirebaseVisionImageLabeler

    אם רוצים להשתמש במתייג התמונות במכשיר:

    Java

    FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance()
        .getOnDeviceImageLabeler();
    
    // Or, to set the minimum confidence required:
    // FirebaseVisionOnDeviceImageLabelerOptions options =
    //     new FirebaseVisionOnDeviceImageLabelerOptions.Builder()
    //         .setConfidenceThreshold(0.7f)
    //         .build();
    // FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance()
    //     .getOnDeviceImageLabeler(options);
    

    Kotlin+KTX

    val labeler = FirebaseVision.getInstance().getOnDeviceImageLabeler()
    
    // Or, to set the minimum confidence required:
    // val options = FirebaseVisionOnDeviceImageLabelerOptions.Builder()
    //     .setConfidenceThreshold(0.7f)
    //     .build()
    // val labeler = FirebaseVision.getInstance().getOnDeviceImageLabeler(options)
    

    אם רוצים להשתמש במתייג של תמונות בענן:

    Java

    FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance()
        .getCloudImageLabeler();
    
    // Or, to set the minimum confidence required:
    // FirebaseVisionCloudImageLabelerOptions options =
    //     new FirebaseVisionCloudImageLabelerOptions.Builder()
    //         .setConfidenceThreshold(0.7f)
    //         .build();
    // FirebaseVisionImageLabeler labeler = FirebaseVision.getInstance()
    //     .getCloudImageLabeler(options);
    

    Kotlin+KTX

    val labeler = FirebaseVision.getInstance().getCloudImageLabeler()
    
    // Or, to set the minimum confidence required:
    // val options = FirebaseVisionCloudImageLabelerOptions.Builder()
    //     .setConfidenceThreshold(0.7f)
    //     .build()
    // val labeler = FirebaseVision.getInstance().getCloudImageLabeler(options)
    

  2. לאחר מכן, מעבירים את התמונה ל-method processImage():

    Java

    labeler.processImage(image)
        .addOnSuccessListener(new OnSuccessListener<List<FirebaseVisionImageLabel>>() {
          @Override
          public void onSuccess(List<FirebaseVisionImageLabel> labels) {
            // Task completed successfully
            // ...
          }
        })
        .addOnFailureListener(new OnFailureListener() {
          @Override
          public void onFailure(@NonNull Exception e) {
            // Task failed with an exception
            // ...
          }
        });
    

    Kotlin+KTX

    labeler.processImage(image)
        .addOnSuccessListener { labels ->
          // Task completed successfully
          // ...
        }
        .addOnFailureListener { e ->
          // Task failed with an exception
          // ...
        }
    

3. אחזור מידע על אובייקטים מתויגים

אם הפעולה של הוספת תווית לתמונות מצליחה, רשימה של FirebaseVisionImageLabel אובייקטים יועברו אל הצלחה רבה. כל אובייקט FirebaseVisionImageLabel מייצג משהו שסומן בתווית בתמונה. אפשר לראות את הטקסט של כל תווית תיאור, מזהה ישות ב-Knowledge Graph (אם זמין), ואת רמת הסמך של ההתאמה. לדוגמה:

Java

for (FirebaseVisionImageLabel label: labels) {
  String text = label.getText();
  String entityId = label.getEntityId();
  float confidence = label.getConfidence();
}

Kotlin+KTX

for (label in labels) {
  val text = label.text
  val entityId = label.entityId
  val confidence = label.confidence
}

טיפים לשיפור הביצועים בזמן אמת

כדי להוסיף תווית לתמונות באפליקציה בזמן אמת, צריך לפעול לפי השלבים הבאים כדי להשיג את קצבי הפריימים הטובים ביותר:

  • ויסות קריאות למתייג התמונות. אם פריים חדש בסרטון הופך כאשר מתייג התמונות פועל, משחררים את המסגרת.
  • אם משתמשים בפלט של מתייג התמונה כדי להציג גרפיקה בשכבת-על מקבלים קודם את התוצאה מ-ML Kit ואז מעבדים את התמונה וליצור שכבת-על בשלב אחד. כך תוכלו להציג את משטח המסך פעם אחת בלבד לכל מסגרת קלט.
  • אם משתמשים ב- Camera2 API, מצלמים תמונות ב פורמט של ImageFormat.YUV_420_888.

    אם משתמשים בגרסה הישנה של ממשק ה-API של המצלמה, מצלמים תמונות ב פורמט של ImageFormat.NV21.

השלבים הבאים